Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
ACS Med Chem Lett ; 15(9): 1516-1525, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39291032

RESUMO

In recent years, it has been proposed that c-mesenchymal-to-epithelial transition factor (c-Met) and histone deacetylase (HDAC) dual inhibition is a promising cancer treatment strategy. Herein, a series of c-Met/HDAC dual inhibitors were designed and synthesized given their synergistic anticancer effect in breast cancer cells. Compound 12d exhibited excellent inhibitory activity against c-Met (IC50 = 28.92 nM) and HDAC (85.68%@1000 nM) and inhibited the proliferation of all three breast cancer cell lines. Moreover, a mechanism investigation demonstrated that 12d could simultaneously induce cell cycle arrest in the G0/G1 phase and cell apoptosis in MDA-MB-231 cells, which was endorsed by c-Met and HDAC pathway blockade. It could also suppress cell invasion. Our results suggest that developing promising c-Met/HDAC dual inhibitors is a novel strategy for breast cancer therapy.

2.
J Virol ; : e0069524, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254312

RESUMO

Enterovirus 71 (EV71) belongs to the family of Picornaviridae; it could cause a variety of illnesses and pose a great threat to public health worldwide. Currently, there is no specific drug treatment for this virus, and a better understanding of virus-host interaction is crucial for novel antiviral development. Here, we find that the class III phosphatidylinositol 3-kinase, VPS34, is an essential host factor for EV71 infection. VPS34 inhibition with either shRNA or specific chemical inhibitor significantly reduces EV71 infection. Meanwhile, EV71 infection upregulates phosphatidylinositol 3-phosphate (PI3P) production in viral replication organelles (ROs), while the depletion of PI3P by phosphatase overexpression inhibits EV71 infection. In addition, the PI3P-binding protein, double FYVE-containing protein 1 (DFCP1), is also required for an efficient replication of EV71. DFCP1 could interact with viral 2C protein and facilitate viral association with lipid droplets (LDs), which are important lipid sources for viral RO biogenesis. Taken together, these results indicate that EV71 virus exploits the VPS34-PI3P-DFCP1-LDs pathway to promote viral RO formation and viral infection, and they also illuminate novel targets for antiviral development.IMPORTANCEEnterovirus 71 (EV71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD) and other serious complications, which are big threats to children under 5 years old. Unravelling the interactions between virus and the host cells will open new avenues in antiviral research. Here, we found the class III phosphatidylinositol 3-kinase, VPS34, and its effector, double FYVE-containing protein 1 (DFCP1), were essential for EV71 infection, both of which could support EV71 viral replication by enhancing the biogenesis of viral replication organelles (ROs). As DFCP1 localizes to lipid droplets, hijacking of these host factors will enable viral utilization of lipids from LDs for the generation of membrane structures during RO biogenesis. In addition, the VPS34 kinase inhibitor was found to be potent against EV71 infection; therefore, this study also brings up a novel target for future anti-EV71 drug development.

3.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273148

RESUMO

Brassica rapa L. is an important overwintering oilseed crop in Northwest China. Histone acetyltransferases (HATs) play an important role in epigenetic regulation, as well as the regulation of plant growth, development, and responses to abiotic stresses. To clarify the role of histone acetylation in the low-temperature response of B. rapa L., we identified 29 HAT genes in B. rapa L. using bioinformatics tools. We also conducted a comprehensive analysis of the physicochemical properties, gene structure, chromosomal localization, conserved structural domains and motifs, cis-acting regulatory elements, and evolutionary relationships of these genes. Using transcriptome data, we analyzed the expression patterns of BrHAT family members and predicted interactions between proteins; the results indicated that BrHATs play an important role in the low-temperature response of B. rapa L. HAT inhibitor (curcumin; CUR) and histone deacetylase inhibitor (Trichostatin A; TSA) were applied to four B. rapa L. varieties varying in cold resistance under the same low-temperature conditions, and changes in the physiological indexes of these four varieties were analyzed. The inhibitor treatment attenuated the effect of low temperature on seed germination, and curcumin treatment was most effective, indicating that the germination period was primarily regulated by histone acetylase. Both inhibitor treatments increased the activity of protective enzymes and the content of osmoregulatory substances in plants, suggesting that histone acetylation and deacetylation play a significant role in the response of B. rapa L. to low-temperature stress. The qRT-PCR analyses showed that the expression patterns of BrHATs were altered under different inhibitor treatments and low-temperature stress; meanwhile, we found three significantly differentially expressed genes. In sum, the process of histone acetylation is involved in the cold response and the BrHATs gene plays a role in the cold stress response.


Assuntos
Brassica rapa , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases , Inibidores de Histona Desacetilases , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Brassica rapa/genética , Brassica rapa/efeitos dos fármacos , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Germinação/efeitos dos fármacos , Filogenia , Acetilação/efeitos dos fármacos
4.
Allergol Immunopathol (Madr) ; 52(5): 59-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39278852

RESUMO

Acquired myasthenia (AM), a debilitating autoimmune disease, is typically characterized by skeletal muscle fatigue and weakness. Despite advances in myasthenia gravis treatment, current approaches remain unsatisfactory and many result in unexpected side effects. Traditional Chinese medicine has shown great potential in the treatment of myasthenia gravis, including relieving myasthenic symptoms, improving patients' quality of life, and reducing Western medicine side effects. This study investigates the protective effects and mechanism of BZYQD in mice with acquired myasthenia. BZYQD alleviates the reduced grip strength and increased expression of MAFbx and MuRF-1 in mice with acquired myasthenia. It also reduces levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α in the mouse serum. In addition, BZYQD reduces ROS accumulation and the mitochondrial ROS production rate, while increasing ATP levels and mitochondrial membrane potential in mice with acquired myasthenia. Moreover, BZYQD decreases the expression of p-JAK2, p-STAT3, and p-AKT in the skeletal muscle of mice with acquired myasthenia. In summary, BZYQD reduces inflammation, enhances mitochondrial function, and regulates the JAK2/STAT3/AKT signaling pathway to treat acquired myasthenia.


Assuntos
Medicamentos de Ervas Chinesas , Janus Quinase 2 , Mitocôndrias , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/imunologia , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/imunologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Int J Mol Sci ; 25(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39201658

RESUMO

Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Ácido Fítico , Folhas de Planta , Transdução de Sinais , Etilenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Fítico/metabolismo , Senescência Vegetal/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
6.
Int J Biol Macromol ; 278(Pt 2): 134763, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151849

RESUMO

Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.


Assuntos
Candida parapsilosis , Estabilidade Enzimática , Simulação de Acoplamento Molecular , Candida parapsilosis/enzimologia , Candida parapsilosis/genética , Especificidade por Substrato , Mutagênese Sítio-Dirigida , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Amidoidrolases/química , Amidoidrolases/metabolismo , Amidoidrolases/genética , Domínio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Conformação Proteica , Simulação por Computador , Modelos Moleculares , Cinética , Ligação Proteica , Mutagênese
7.
Biomacromolecules ; 25(9): 5745-5757, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39173040

RESUMO

The white pollution caused by unsustainable materials is a significant challenge around the globe. Here, a novel and fully biobased polybutyrolactam (PBY) nanofiber membrane was fabricated via the electrospinning method. As-spun PBY nanofiber membranes have good thermal stability, high porosity of up to 71.94%, and excellent wetting behavior. The biodegradability in soil, UV aging irradiation, and seawater was investigated. The PBY nanofiber membrane is almost completely degraded in the soil within 80 days, showing excellent degradability. More interestingly, γ-aminobutyric acid, as a healthcare agent with intrinsic hypotensive, tranquilizing, diuretic, and antidiabetic efficacy, can be detected in the degradation intermediates. In addition, the PBY nanofiber membrane also exhibits antibacterial ability against Escherichia coli. As a fully biomass-derived material, the PBY membrane has excellent biodegradable performance in various environments as well as negligible cytotoxicity and commendable cell proliferation. Our PBY nanofiber membrane shows great potential as biodegradable packaging and in vitro healthcare materials.


Assuntos
Antibacterianos , Proliferação de Células , Escherichia coli , Nanofibras , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Proliferação de Células/efeitos dos fármacos , Têxteis , Biodegradação Ambiental , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Lactamas/química , Lactamas/farmacologia
8.
J Nanobiotechnology ; 22(1): 393, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965602

RESUMO

BACKGROUND: The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT: Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION: The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Lipossomos , Fármacos Neuroprotetores , Piroptose , Ratos Sprague-Dawley , Saponinas , Animais , Saponinas/farmacologia , Saponinas/química , Piroptose/efeitos dos fármacos , Ratos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lipossomos/química , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Células PC12 , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
9.
Cardiovasc Diagn Ther ; 14(3): 402-418, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975011

RESUMO

Background: Many studies have pointed out that iron overload in the body is a risk factor for coronary atherosclerosis (AS), while there are also studies that show that iron deficiency is associated with coronary AS. There is still no consensus on how iron metabolism affects coronary artery disease (CAD). This study aimed to analyze the relationship between iron metabolism indexes and CAD, investigate the diagnostic value of soluble transferrin receptor (sTfR) in suspected CAD, and establish a diagnostic model. Methods: This was a retrospective study. A total of 268 people with CAD-like symptoms who underwent coronary angiography in the Department of Cardiovascular Medicine, The Second Affiliated Hospital of Anhui Medical University from September 2022 to May 2023 without other chronic diseases or related medication history were included in the study and formed a continuous series including 188 CAD patients and 80 control subjects. Each iron metabolism index was divided into a grade variable according to tertile. The comparison of CAD morbidity between the tertiles and nonlinear correlation test was conducted to investigate the relationship between iron metabolism indexes and CAD risk. We used restricted cubic spline (RCS) to plot the relationship curve between sTfR and CAD risk and to determine the sTfR value corresponding to the minimal odds, according to which we divided the total sample into the "sTfR low level" subgroup and the "sTfR high level" subgroup. Logistic regression analyses were used to establish diagnostic models in both subgroups. The diagnostic efficiency of the indexes and models was compared by receiver operating characteristic (ROC) analysis. Results: There is a "J" shape correlation between sTfR and CAD risk. Age/sTfR ratio [area under the curve (AUC) =0.690, 95% confidence interval (CI): 0.598-0.782, specificity 0.488 and sensitivity 0.842] has the best diagnostic efficiency in the "sTfR low level" subgroup. The diagnostic efficiency of sTfR (AUC =0.701, 95% CI: 0.598-0.803, specificity 0.541 and sensitivity 0.797) in the "sTfR high level" subgroup was higher than that of cardiac troponin I (cTnI) (AUC =0.674, 95% CI: 0.564-0.784, specificity 0.719 and sensitivity 0.653). The specific diagnostic methods were as follows: (I) When sTfR ≤1.087 mg/L, calculate the age/sTfR ratio, which indicates the diagnosis of CAD when the result is >58.595; (II) We can directly make a preliminary clinical diagnosis of CAD when sTfR >1.205 mg/L. Except for the above 2 cases, we can initially rule out a diagnosis of CAD. Conclusions: The iron metabolism index sTfR correlates with CAD morbidity in a "J" shape. With superior diagnostic efficacy than cTnI, sTfR can assist in diagnosing CAD in patients with CAD-like symptoms. In addition, sTfR can provide guidance for the management of body iron levels in CAD patients.

10.
J Hazard Mater ; 474: 134798, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843633

RESUMO

The application of Monitored Natural Attenuation (MNA) technology has been widespread, while there is a paucity of data on groundwater with multiple co-contaminants. This study focused on high permeability, low hydraulic gradient groundwater with co-contamination of benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorinated aliphatic hydrocarbons (CAHs), and chlorinated aromatic hydrocarbons (CPs). The objective was to investigate the responses of microbial communities during natural attenuation processes. Results revealed greater horizontal variation in groundwater microbial community composition compared to vertical variation. The variation was strongly correlated with the total contaminant quantity (r = 0.722, p < 0.001) rather than individual contaminants. BTEX exerted a more significant influence on community diversity than other contaminants. The assembly of groundwater microbial communities was primarily governed by deterministic processes (ßNTI < -2) in high contaminant concentration zones, while stochastic processes (|ßNTI| < 2) dominated in low-concentration zones. Moreover, the microbial interactions shifted at different depths indicating the degradation rate variation in the vertical. This study makes fundamental contribution to the understanding for the effects of groundwater flow and material fields on indigenous microbial communities, which will provide a scientific basis for more precise adoption of microbial stimulation/augmentation to accelerate the rate of contaminant removal.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/análise , Solventes/química , Microbiota , Bactérias/classificação , Bactérias/metabolismo , Hidrocarbonetos Clorados/análise , Derivados de Benzeno/análise , Microbiologia da Água , RNA Ribossômico 16S/genética
11.
Huan Jing Ke Xue ; 45(6): 3412-3420, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897762

RESUMO

The fifth session of the 13th National People's Congress proposed to be committed to promoting carbon peaking and carbon neutrality, promoting the comprehensive green and low-carbon transformation of the economy and society and achieving high-quality development. As an important scientific and technological innovation and industrial cluster in Shaanxi Province, the economic development of the Xi'an Hi-tech Zone largely relies on energy consumption, making the task of carbon reduction particularly challenging. Firstly, taking the Xi'an Hi-tech Zone as the research object, through systematic accounting of carbon emissions within the park, we analyzed the current carbon emission status of enterprises in different energy types and industries. Then, using the Kaya model, multiple independent carbon peak scenarios were set up to predict the total carbon emissions and peak time under different scenarios. Finally, based on the development characteristics of the Xi'an Hi-tech Zone, we scientifically selected corresponding carbon emission reduction paths and provided reasonable emission reduction suggestions. The results showed that the proportion of carbon emissions consumed by electricity was currently the highest, and the share was increasing yearly. Industrial carbon emissions had always been dominant, and the development of the tertiary industry was becoming increasingly prosperous. In the scenario prediction, the carbon emission factor scenario, energy intensity scenario, and economic level scenario could reach the carbon peak by 2030. Among them, the economic development level had the greatest impact on the peak and time of the future carbon peak in the Xi'an Hi-tech Zone, whereas the industrial structure scenario, energy source structure scenario, and population size scenario had no peak before 2030. The future emission reduction path mainly started from decarbonization of the power sector, stable and high-quality economic development, green upgrading of energy and industrial structure, and building a green transportation system. This can reserve more preparation time for achieving carbon neutrality and provide decision-making reference for the low-carbon development of industrial parks in China.

12.
Nat Commun ; 15(1): 5103, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877035

RESUMO

Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing. This study compares engineered CBEs derived from TadA-8e in rice and tomato cells, identifying TadCBEa, TadCBEd, and TadCBEd_V106W as efficient CBEs with high purity and a narrow editing window. A dual base editor, TadDE, promotes simultaneous C-to-T and A-to-G editing. Multiplexed base editing with TadCBEa and TadDE is demonstrated in transgenic rice, with no off-target effects detected by whole genome and transcriptome sequencing, indicating high specificity. Finally, two crop engineering applications using TadDE are shown: introducing herbicide resistance alleles in OsALS and creating synonymous mutations in OsSPL14 to resist OsMIR156-mediated degradation. Together, this study presents TadA-8e derived CBEs and a dual base editor as valuable additions to the plant editing toolbox.


Assuntos
Sistemas CRISPR-Cas , Citosina , Edição de Genes , Oryza , Plantas Geneticamente Modificadas , Edição de Genes/métodos , Citosina/metabolismo , Oryza/genética , Solanum lycopersicum/genética , Adenina/análogos & derivados , Adenina/metabolismo , Resistência a Herbicidas/genética , Genoma de Planta
13.
Plant Biotechnol J ; 22(9): 2488-2503, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713743

RESUMO

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma de Planta , Oryza , Edição de Genes/métodos , Genoma de Planta/genética , Oryza/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética
15.
Coron Artery Dis ; 35(6): 451-458, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595165

RESUMO

OBJECTIVES: This study aimed to analyze the ability of subendocardial viability ratio (SEVR) to predict the degree of coronary artery stenosis and the relationship between SEVR and the incidence of short-term cardiovascular endpoint events. METHOD: The indexes of 243 patients with chest pain were collected.. Binary logistic regression analyses were performed using the dichotomous outcome of high and non-high SYNTAX scores. Receiver operating characteristic curves were employed to comparatively analyze the diagnostic efficiencies of the indices and models. A survival analysis combined with the Cox regression analysis was performed using the Kaplan-Meier method to understand the relationship between the SEVR and the incidence of cardiovascular events within 1 year in patients with coronary heart disease (CHD). RESULTS: SEVR was significantly lower ( P  < 0.05) in the high-stenosis group than control and low-stenosis groups. The diagnostic efficacy of SEVR [area under the curve (AUC) = 0.861] was better than those of age (AUC = 0.745), ABI (AUC = 0.739), and AIx@HR75 (AUC = 0.659). The cutoff SEVR was 1.105. In patients with confirmed CHD who had been discharged from the hospital for 1 year, only SEVR affected survival outcomes (hazard ratio = 0.010; 95% confidence interval: 0.001-0.418; P  = 0.016). CONCLUSION: A significant decrease in SEVR predicted severe coronary artery stenosis, with a cutoff value of 1.105 and an accuracy of 0.861. In patients with CHD, the lower the SEVR, the higher was the rate of cardiovascular events at 1 year after hospital discharge.


Assuntos
Angiografia Coronária , Estenose Coronária , Valor Preditivo dos Testes , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estenose Coronária/epidemiologia , Estenose Coronária/fisiopatologia , Estenose Coronária/diagnóstico , Estenose Coronária/complicações , Incidência , Angiografia Coronária/métodos , Idoso , Índice de Gravidade de Doença , Endocárdio/fisiopatologia , Curva ROC , Estudos Retrospectivos , Doença das Coronárias/epidemiologia , Doença das Coronárias/fisiopatologia , Prognóstico , Fatores de Risco
16.
STAR Protoc ; 5(2): 102994, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38568815

RESUMO

Here, we present a protocol for 3D printing heart tissues using thiol-norbornene photoclick collagen (NorCol). We describe steps for synthesizing NorCol, preparing bioink and the support bath, and cell-laden printing. We then detail procedures for the loading of C2C12 cells into NorCol, ensuring structural integrity and cell viability after printing. This protocol is adaptable to various cell lines and allows for the printing of diverse complex structures, which can be used in drug screening and disease modeling.


Assuntos
Colágeno , Norbornanos , Impressão Tridimensional , Compostos de Sulfidrila , Engenharia Tecidual , Animais , Compostos de Sulfidrila/química , Colágeno/química , Camundongos , Engenharia Tecidual/métodos , Norbornanos/química , Miocárdio/citologia , Miocárdio/metabolismo , Linhagem Celular , Alicerces Teciduais/química , Coração , Sobrevivência Celular/efeitos dos fármacos
17.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636125

RESUMO

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Assuntos
Óxidos , Pirólise , Óxidos/química , Enxofre/química , Incineração/métodos , Compostos Férricos/química , Gases/química , Borracha/química , Compostos de Cálcio/química , Cobre
18.
Ecotoxicol Environ Saf ; 276: 116335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626603

RESUMO

Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.


Assuntos
Candida parapsilosis , Etanol , Oryza , Vinho , Concentração de Íons de Hidrogênio , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Etanol/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Uretana/metabolismo , Simulação de Dinâmica Molecular , Biodegradação Ambiental , Mutação , Estabilidade Enzimática , População do Leste Asiático
19.
Physiol Meas ; 45(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38688301

RESUMO

Objective.Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response.Approach.We monitored oxygen saturation (SpO2), transcutaneous oxygen pressure (TcPO2), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body's response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal-Wallis test, Quade test, and Spearman test.Main results.We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12-25.60 s). The delay time of hemodynamic parameters was significantly shorter than that of SpO2and TcPO2(p< 0.01). OSA severity affected the response delay of SpO2, TcPO2, SV, mean BP, and HR (p< 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (r= -0.4831,p< 0.0001).Significance.The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.


Assuntos
Hipóxia , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Fatores de Tempo , Feminino , Pessoa de Meia-Idade , Adulto , Hemodinâmica , Frequência Cardíaca , Saturação de Oxigênio , Pressão Sanguínea/fisiologia , Processamento de Sinais Assistido por Computador
20.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418607

RESUMO

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA