Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764508

RESUMO

Atomic diffusion by the vacancy defect of L12-Al3M (M = Sc, Zr, Er, Y) was investigated based on a first-principles calculation. The point defect formation energies were firstly evaluated. Then, the migration energy for different diffusion paths was obtained by the climbing-image nudged elastic band (CI-NEB) method. The results showed that Al atomic and M atomic diffusions through nearest-neighbor jump (NNJ) mediated by Al vacancy (VAl) were, respectively, the preferred diffusion paths in Al3M phases under both Al-rich and M-rich conditions. The other mechanisms, such as six-jump cycle (6JC) and next-nearest-neighbor jump (NNNJ), were energetically inhibited. The order of activation barriers for NNJ(Al-VAl) was Al3Zr < Al3Y < Al3Er < Al3Sc. The Al3Sc phase had high stability with a high self-diffusion activation barrier, while the Al3Zr and Al3Y phases were relatively unstable with a low self-diffusion activation energy. Moreover, the atomic-diffusion behavior between the core and shell layers of L12-Al3M was also further investigated. Zr atoms were prone to diffusion into the Al3Y core layer, resulting in no stable core-shelled Al3(Y,Zr), which well agreed with experimental observation.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145027

RESUMO

The effects of 44 types of elements on the stabilities of I1-constitute multi-type long-period stacking-ordered (LPSO) structures in Mg alloys, such as 4H, 6H, 8H, 9R, 12H, 15R, and 16H phases, are systematically investigated by first-principle high-performance calculations. The intrinsic stacking-fault energies (ISFEs) and their increments are calculated along with the formation enthalpies of solute atoms, and interaction energies between solute atoms and LPSO structures. The results suggest that the 15R phase is the easiest to form and stabilize among these LPSO structures, and 44 types of solute atoms have different segregation characteristics in these LPSO structures. A high temperature inhibits structural stabilizations of the LPSO phases, and these alloying elements, such as elements (Sb, Te, and Cs) for 4H; elements (S, Fe, Sb, and Te) for 6H, 8H, 9R, 15R, and 16H; and elements (S, Sb, and Te) for 12H, can effectively promote the stability of LPSO structures at high temperatures. S and Fe atoms are the most likely to promote the stabilities of the 16H structure with regard to other LPSO phases, but the Fe atom tends to inhibit the stabilities of 4H and 12H structures. This work can offer valuable references to further study and develop high-performance Mg alloys with multi-type LPSO structures.

3.
Small ; 17(24): e2005640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783132

RESUMO

Given the electronegativity and bonding environment of halogen elements, halogenation (i.e., fluorination, chlorination, bromination, and iodination) serves as a versatile strategy for chemical modifications of materials. The combination of halogens and 2D materials has triggered extensive interests since the first report on graphene fluorination in 2008. Subsequently, scholars consistently conduct pre-, in-process, or posthalogenation modifications of emerging 2D materials to achieve desired properties and broad device applications. They also continuously explore the role of halogens in 2D material functionalization. The multiple advantages introduced by halogen decoration make 2D materials outstanding from each subclass. In this review, an overall retrospect is provided on the research advances in the area of 2D material halogenation, including experimental halogenation strategies, halogen-triggered novel physics and properties, and advanced applications across the studied objects. Future research directions in this area are also proposed.


Assuntos
Grafite , Halogênios , Halogenação
4.
RSC Adv ; 10(24): 14080-14088, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498461

RESUMO

Based on exact muffin-tin orbitals (EMTO) and coherent potential approximation (CPA), we investigate the effects of Mo content on the mechanical properties of CrFeCoNiMo x (0.1 ≤ x ≤ 0.3) high-entropy alloys (HEAs) with a face-centered-cubic (fcc) crystal structure; relevant physical parameters are calculated as a function of Mo content. The results indicate that the theoretical predictions of lattice constant, elastic constants, shear modulus, and Young's modulus are in good agreement with the available experimental data, which proves the validity of the applied approach. CrFeCoNiMo0.26 HEA has better ductility and plasticity with respect to other HEAs with different Mo contents because it has the minimum elastic moduli and Vickers hardness, and has the maximum Pugh's ratio and anisotropy factors, etc. CrFeCoNiMo0.2 HEA has better plasticity compared with CrFeCoNiMo0.1 and CrFeCoNiMo0.3 HEAs due to its minimum energy factor and maximum dislocation width. Screw dislocation is more likely to nucleate in CrFeCoNiMo x (0.1 ≤ x ≤ 0.3) HEAs than edge dislocation. The present studies are helpful to explore the excellent mechanical properties of CrFeCoNiMo x (0.1 ≤ x ≤ 0.3) HEAs during experiments.

5.
RSC Adv ; 10(68): 41324-41331, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516556

RESUMO

Frist-principles calculations combined with exact muffin-tin orbitals (EMTO) and coherent potential approximation (CPA) methods are conducted to investigate the effects of Cu content on mechanical properties of CrFeCoNiCu x (0 ≤ x ≤ 0.3) high-entropy alloys (HEAs), and the dependencies of relevant physical parameters on Cu content in HEAs are shown and discussed in this work. It is found that the equilibrium lattice constant increases linearly and the elastic constant decreases gradually with increasing Cu content, and the crystal structure of CrFeCoNiCu x (0 ≤ x ≤ 0.3) HEAs can preserve mechanical stability according to the stability criterion of cubic crystals. From the general trend, adding Cu atoms to CrFeCoNi-based HEAs will reduce elastic moduli, Vickers hardness, and yield strength, whereas ductility and plasticity of HEAs show the opposite trend. Also, three different dislocations, including screw, edge, and mixed dislocations, and twins are more likely to occur in HEAs with high Cu content because energy factors decrease steadily and dislocation widths increase gradually with increasing Cu content. The present results provide valuable theoretical verification for further research on the mechanical properties of CrFeCoNiCu x (0 ≤ x ≤ 0.3) HEAs.

6.
Materials (Basel) ; 11(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320429

RESUMO

The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPa m , below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA