Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 275: 116626, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609858

RESUMO

This study characterizes the impacts of transported peat-forest (PF) burning smoke on an urban environment and evaluates associated source burning conditions based on carbon properties of PM2.5 at the receptor site. We developed and validated a three-step classification that enables systematic and more rapid identification of PF smoke impacts on a tropical urban environment with diverse emissions and complex atmospheric processes. This approach was used to characterize over 300 daily PM2.5 data collected during 2011-2013, 2015 and 2019 in Singapore. A levoglucosan concentration of ≥0.1 µg/m3 criterion indicates dominant impacts of transported PF smoke on urban fine aerosols. This approach can be used in other ambient environments for practical and location-dependent applications. Organic carbon (OC) concentrations (as OC indicator) can be an alternate to levoglucosan for assessing smoke impacts on urban environments. Applying the OC concentration indicator identifies smoke impacts on ∼80% of daily samples in 2019 and shows an accuracy of 51-86% for hourly evaluation. Following the systematic identification of urban PM2.5 predominantly affected by PF smoke in 2011-2013, 2015 and 2019, we assessed the concentration ratio of char-EC/soot-EC as an indicator of smoldering- or flaming-dominated burning emissions. When under the influence of transported PF smoke, the mean concentration ratio of char-EC to soot-EC in urban PM2.5 decreased by >70% from 8.2 in 2011 to 2.3 in 2015 but increased to 3.8 in 2019 (p < 0.05). The reversed trend with a 65% increase from 2015 to 2019 shows stronger smoldering relative to flaming, indicating a higher level of soil moisture at smoke origins, possibly associated with rewetting and revegetating peatlands since 2016.


Assuntos
Poluentes Atmosféricos , Fumaça , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Florestas , Material Particulado/análise , Estações do Ano , Singapura , Fumaça/análise , Solo
2.
Sci Total Environ ; 619-620: 528-544, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156272

RESUMO

This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA