Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 762-773, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788443

RESUMO

Although photothermal therapy (PTT) is effective at killing tumor cells, it can inadvertently damage healthy tissues surrounding the tumor. Nevertheless, lowering the treatment temperature will reduce the therapeutic effectiveness. In this study, we employed 2,2'-((2Z,2'Z)-((4,4,9,9-Tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile (IDIC), a molecule possessing a conventional acceptor-donor-acceptor (A-D-A) structure, as a photothermal agent (PTA) to facilitate effective mild photothermal therapy (mPTT). IDIC promotes intramolecular charge transfer under laser irradiation, making it a promising candidate for mPTT. To enhance the therapeutic potential of IDIC, we incorporated quercetin (Qu) into IDIC to form IDIC-Qu nanoparticles (NPs), which can inhibit heat shock protein (HSP) activity during the process of mPTT. Moreover, IDIC-Qu NPs exhibited exceptional water dispersibility and passive targeting abilities towards tumor tissues, attributed to its enhanced permeation and retention (EPR) effect. These advantageous properties position IDIC-Qu NPs as a promising candidate for targeted tumor treatment. Importantly, the IDIC-Qu NPs demonstrated controllable photothermal effects, leading to outstanding in vitro cytotoxicity against cancer cells and effective in vivo tumor ablation through mPTT. IDIC-Qu NPs nano-system enriches the family of organic PTAs and holds significant promise for future clinical applications of mPTT.


Assuntos
Nanopartículas , Terapia Fototérmica , Humanos , Animais , Camundongos , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quercetina/química , Quercetina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Estrutura Molecular , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Experimentais/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/terapia
2.
Adv Sci (Weinh) ; : e2306671, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639383

RESUMO

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.

3.
Adv Healthc Mater ; : e2304136, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551143

RESUMO

Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462024

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent type of liver cancer, and CD24 gene is reportedly involved in HCC progression. However, the precise regulatory mechanisms of CD24 in HCC remain unclear. In this study, we established a primary HCC mouse model and observed that CD24, induced by inactivation of the Hippo pathway, was highly expressed in HCC. Using a systematic molecular and genomic approach, we identified the Hippo-YAP1-SOX4 pathway as the mechanism through which YAP1 induces CD24 upregulation in HCC cells. CD24 knockdown significantly attenuated YAP1 activation-induced HCC. These findings shed light on the link between CD24 and HCC progression, particularly in the Hippo-inactivated subclass of HCC. Therefore, CD24 may serve as a potential target for specific treatment of this HCC subclass.


Assuntos
Antígeno CD24 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Via de Sinalização Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regulação para Cima , Antígeno CD24/metabolismo
5.
Cell Death Dis ; 15(2): 125, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336839

RESUMO

Anaplastic thyroid carcinoma (ATC) has a 100% disease-specific mortality rate. The JAK1/2-STAT3 pathway presents a promising target for treating hematologic and solid tumors. However, it is unknown whether the JAK1/2-STAT3 pathway is activated in ATC, and the anti-cancer effects and the mechanism of action of its inhibitor, ruxolitinib (Ruxo, a clinical JAK1/2 inhibitor), remain elusive. Our data indicated that the JAK1/2-STAT3 signaling pathway is significantly upregulated in ATC tumor tissues than in normal thyroid and papillary thyroid cancer tissues. Apoptosis and GSDME-pyroptosis were observed in ATC cells following the in vitro and in vivo administration of Ruxo. Mechanistically, Ruxo suppresses the phosphorylation of STAT3, resulting in the repression of DRP1 transactivation and causing mitochondrial fission deficiency. This deficiency is essential for activating caspase 9/3-dependent apoptosis and GSDME-mediated pyroptosis within ATC cells. In conclusion, our findings indicate DRP1 is directly regulated and transactivated by STAT3; this exhibits a novel and crucial aspect of JAK1/2-STAT3 on the regulation of mitochondrial dynamics. In ATC, the transcriptional inhibition of DRP1 by Ruxo hampered mitochondrial division and triggered apoptosis and GSDME-pyroptosis through caspase 9/3-dependent mechanisms. These results provide compelling evidence for the potential therapeutic effectiveness of Ruxo in treating ATC.


Assuntos
Nitrilas , Pirazóis , Pirimidinas , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Dinâmica Mitocondrial , Piroptose , Caspase 9/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Apoptose
6.
Front Neurol ; 15: 1288032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313560

RESUMO

Background: Although some studies have shown that exercise has a good effect on improving the cardiopulmonary function of stroke patients, it still needs to be determined which exercise method does this more effectively. We, therefore, aimed to evaluate the effectiveness of different exercise methods in improving cardiovascular function in stroke patients through a network meta-analysis (NMA), providing a basis to select the best treatment plan for stroke patients. Methods: We systematically searched CNKI, WanFang, VIP, CBM, PubMed, Embase, Web of Science, and The Cochrane Library databases from establishment to 30 April 2023. Randomized controlled trials (RCTS) on exercise improving cardiopulmonary function in stroke patients were included, and we screened the included articles and extracted the relevant data. RevMan (version 5.4) and Stata (version 17.0) were used for data analysis. Results: We included 35 RCTs and a total of 2,008 subjects. Intervention measures included high-intensity interval training (HIIT), aerobic training (AT), resistance training (RT), combined aerobic and resistance exercise (CE), and conventional therapy (CT). In the network meta-analysis, the surface under the cumulative ranking area (SUCRA) ranking result indicated that HIIT improved peak oxygen uptake (VO2peak) and 6 mins walking distance (6MWD) optimally, with rankings of HIIT (100.0%) > CE (70.5%) > AT (50.2%) > RT (27.7%) > CT (1.6%), and HIIT (90.9%) > RT (60.6%) > AT (48.9%) > RT (48.1%) > CT (1.5%), respectively. The SUCRA ranking result showed that CE improved systolic blood pressure (SBP) and diastolic blood pressure (DBP) optimally, with rankings of CE (82.1%) > HIIT (49.8%) > AT (35.3%) > CT (32.8%), and CE (86.7%) > AT (45.0%) > HIIT (39.5%) > CT (28.8%), respectively. Conclusion: We showed that exercise can effectively improve the cardiopulmonary function of stroke patients. HIIT was the most effective in improving VO2peak and 6MWD in stroke patients. CE was the most effective in improving SBP and DBP in stroke patients. However, due to the limitations of existing clinical studies and evidence, larger sample size, multi-center, and high-quality RCTs are needed to verify the above conclusions in the future. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42023436773].

7.
Int J Pharm ; 652: 123812, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237707

RESUMO

Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1ß and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.


Assuntos
Falência Hepática Aguda , Vitis , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Administração Oral
8.
Acta Biomater ; 173: 482-494, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981044

RESUMO

Acute kidney injury (AKI) is a prevalent condition in critically ill patients that is often associated with significant morbidity and mortality. As the lack of effective early diagnosis methods often delays AKI treatment, there is currently no definitive clinical intervention available. In this study, we aimed to address these challenges by developing a nano-system called Platelet membranes-ICG-SS31-PLGA (PISP), which was designed to selectively target to the kidney site, taking advantage of the natural tendency of platelets to accumulate at sites of vascular injury. This approach allowed for the accumulation of PISP within the kidney as the disease progresses. By incorporating ICG, the in vivo distribution of PISP can be observed for NIR diagnosis of AKI. This non-invasive imaging technique holds great promise for early detection and monitoring of AKI. Furthermore, Elamipretide (SS31) acts as a mitochondria-targeted antioxidant that protects against mitochondrial damage and reduces oxidative stress, inflammation, and apoptosis. The combination of diagnostic and therapeutic capabilities within a single nano-system makes the PISP approach a valuable tool for addressing AKI. This intervention helps to prevent the deterioration of AKI and promotes the recovery. STATEMENT OF SIGNIFICANCE.


Assuntos
Injúria Renal Aguda , Nanopartículas , Humanos , Antioxidantes/farmacologia , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/tratamento farmacológico , Rim , Nanopartículas/uso terapêutico
9.
Biomater Adv ; 154: 213592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717364

RESUMO

Acute liver failure (ALF) is a life-threatening clinical syndrome mostly induced by viral infections or drug abuse. As a novel therapeutic adjuvant or delivery vehicle, plant-derived exosome-like nanovesicles (PELNVs) have been extensively studied in recent years. This study aimed to develop garlic-derived exosome-like nanovesicles (GaELNVs) in order to ameliorate liver injury induced by LPS/D-GalN in mice, inhibit inflammatory eruption and reduce inflammatory cells infiltration. The results showed that treatment with GaELNVs improved liver pathology and reduced the levels of soluble inflammatory mediators IL-6, IL-1ß and TNF-α in the serum of ALF mice. GaELNVs reversed the upregulation of Cleaved Caspase-9, Cleaved Caspase-3, p53 and Bax expression and decreased Bcl2 activation caused by D-GalN/LPS, and inhibited NF-κB p65 expression and translocation to the nucleus. Meanwhile, treatment with GaELNVs resulted significant reduction in NLRP3 activation and Caspase-1 maturation, as well as decrease in the release of the inflammatory mediator IL-18. Additionally, an upregulation of the expression of proteins related to energy metabolism and autophagy occurrence including Foxo3a, Sirt1, and LC3-II was detected in the liver. Oral administration of GaELNVs also led to significant alteration in the expression of F4/80 and CD11b in the liver. Furthermore, the detection of chemokines in mouse liver tissue revealed that GaELNVs exhibited minimal reduction in the expression of CCL2, CCL3, CCL5 and CCL8. The decreased expression of CCR2 and CCR5 in the liver suggests that GaELNVs have the ability to decrease the recruitment of monocytes from the circulation to the liver. A reduction in the infiltration of F4/80loCD11bhi monocyte-derived macrophages into the liver was also observed. This study provides novel evidence that GaELNVs can ameliorate inflammatory eruptions and hinder the migration of circulating monocytes to the liver, as well as decrease macrophage infiltration by inhibiting CCR2/CCR5 signaling. Consequently, GaELNVs hold promise as a novel therapeutic agent for clinical management of liver disease.


Assuntos
Exossomos , Alho , Falência Hepática Aguda , Animais , Camundongos , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/patologia
11.
Chem Commun (Camb) ; 59(60): 9251-9254, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37427455

RESUMO

We report cell-type-specific and CRISPR/Cas9-mediated mtDNA editing platform by using bifunctional biodegradable silica nanoparticles, which were capable of selective intracellular delivery to CD44-overexpressed cells and subsequent mitochondrial localization, followed by glutathione-responsive biodegradation and release of Cas9/sgRNA to realize precise mtDNA editing.


Assuntos
DNA Mitocondrial , Nanopartículas , DNA Mitocondrial/genética , Sistemas CRISPR-Cas , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas
12.
J Physiol Biochem ; 79(4): 757-770, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458957

RESUMO

Recent studies suggest that Rab11-family interacting proteins (Rab11-FIPs) play an important role in tumorigenesis and progression. Among the Rab11-FIPs, Rab11-FIP4 has been reported to be significantly upregulated in various cancers, including hepatocellular carcinoma (HCC). However, the possible effect on HCC stemness and the underlying mechanism has never been characterized. Here, we found that Rab11-FIP4 was dramatically increased in HCC cell lines and tissues, and had a positive correlation with cancer stemness. Functional studies revealed that elevated expression of Rab11-FIP4 in HCC cells significantly promoted sphere formation, and enhanced the mRNA and protein levels of stemness-associated markers, ALDH1A1, CD133, NANOG, and OCT4. Conversely, the knockdown of Rab11-FIP4 suppressed the cancer stem cell (CSC)-like characteristics of HCC cells. Moreover, silencing of Rab11-FIP4 obviously increased the sensitivity of HCC cells to sorafenib. Mechanistically, Rab11-FIP4 was shown to interact with ADP-ribosylation factor 5 (ARF5) to influence cell cycle-related proteins, CDK1/cyclin B, thereby promoting HCC stemness. Taken together, our results uncovered an essential role for Rab11-FIP4 in regulating CSC-like features of HCC cells and identified Rab11-FIP4 as a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/fisiologia , Neoplasias Hepáticas/patologia , Linhagem Celular , Sorafenibe , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Fatores de Ribosilação do ADP/metabolismo
13.
J Nanobiotechnology ; 21(1): 176, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269014

RESUMO

BACKGROUND: Angiogenesis and tissue repair in chronic non-healing diabetic wounds remain critical clinical problems. Engineered MSC-derived exosomes have significant potential for the promotion of wound healing. Here, we discuss the effects and mechanisms of eNOS-rich umbilical cord MSC exosomes (UCMSC-exo/eNOS) modified by genetic engineering and optogenetic techniques on diabetic chronic wound repair. METHODS: Umbilical cord mesenchymal stem cells were engineered to express two recombinant proteins. Large amounts of eNOS were loaded into UCMSC-exo using the EXPLOR system under blue light irradiation. The effects of UCMSC-exo/eNOS on the biological functions of fibroblasts and vascular endothelial cells in vitro were evaluated. Full-thickness skin wounds were constructed on the backs of diabetic mice to assess the role of UCMSC-exo/eNOS in vascular neogenesis and the immune microenvironment, and to explore the related molecular mechanisms. RESULTS: eNOS was substantially enriched in UCMSCs-exo by endogenous cellular activities under blue light irradiation. UCMSC-exo/eNOS significantly improved the biological functions of cells after high-glucose treatment and reduced the expression of inflammatory factors and apoptosis induced by oxidative stress. In vivo, UCMSC-exo/eNOS significantly improved the rate of wound closure and enhanced vascular neogenesis and matrix remodeling in diabetic mice. UCMSC-exo/eNOS also improved the inflammatory profile at the wound site and modulated the associated immune microenvironment, thus significantly promoting tissue repair. CONCLUSION: This study provides a novel therapeutic strategy based on engineered stem cell-derived exosomes for the promotion of angiogenesis and tissue repair in chronic diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Camundongos , Animais , Optogenética , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Exossomos/metabolismo , Cicatrização , Cordão Umbilical
14.
J Ethnopharmacol ; 313: 116520, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120058

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF) is a pathological process of irreversible scarring of lung tissues, with limited treatment means. Sceptridium ternatum (Thunb.) Lyon (STE) is a traditional Chinese herbal medicine that has a traditional use in relieving cough and asthma, resolving phlegm, clearing heat, and detoxicating in China. However, its role in PF has not been reported. AIM OF THE STUDY: This study aims to investigate the protective role of STE in PF and the underlying mechanisms. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were divided into control group, PF model group, positive drug (pirfenidone) group and STE group. After 28 days of STE administration in bleomycin (BLM)-induced PF rats, living Nuclear Magnetic Resonance Imaging (NMRI) was used to observe the structural changes of lung tissues. H&E and Masson's trichrome staining were used to observe PF-associated pathological alteration, and immunohistochemistry (IHC) staining, western blotting, and qRT-PCR were used to detect the expression of PF-related marker proteins in the lung tissues. ELISA was used to detect PF-associated biochemical criteria in the lung tissue homogenates. The proteomics technology was used to screen the different proteins. Co-immunoprecipitation, western blotting, and IHC staining were used to confirm the underlying targets of STE as well as its downstream signaling. UPLC-Triple-TOF/MS assay was used to explore the effective components in the alcohol extracts of STE. Autodock vina was used to detect the potential binding between the above effective components and SETDB1. RESULTS: STE prevented PF by inhibiting the activation of lung fibroblasts and ECM deposition in BLM-induced PF rats. Mechanism analyses demonstrated that STE could inhibit the up-regulation of SETDB1 induced by BLM and TGF-ß1, which further blocked the binding of SETDB1 and STAT3 as well as the phosphorylation of STAT3, ultimately preventing the activation and proliferation of lung fibroblasts. CONCLUSION: STE played a preventive role in PF by targeting the SETBD1/STAT3/p-STAT3 pathway, which may be a potential therapeutic agent for PF.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Ratos , Animais , Ratos Sprague-Dawley , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Pulmão , Bleomicina , Medicamentos de Ervas Chinesas/efeitos adversos , Etanol/farmacologia
15.
Gen Physiol Biophys ; 42(1): 13-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36705301

RESUMO

Guillain-Barré syndrome (GBS) is an acute immune-mediated paralytic neuropathy with variable disease course and outcome. In this study, we aimed to investigate the therapeutic effects of celastrol on GBS and uncover its underlying mechanisms. Experimental autoimmune neuritis (EAN) is a typical animal model for GBS, and thus an EAN rat model was established with the injection of celastrol or/and LPS. We assessed the body weights and EAN clinical scores of rats. HE staining, flow cytometry, RT-qPCR, and Western blotting were respectively employed to measure pathological damage, proportions of cells (Th1, Th17, and Treg), Th1/Th17 cell differentiation-related mRNAs (IFN-γ, TBX21, IL-18, RORγT, IL-17, and IL-23) and TLR4/NF-κB/STAT3 pathway-related proteins (TLR4, NF-κB, p-NF-κB, STAT3, and p-STAT3). We found that celastrol attenuated clinical symptoms and pathological damage of GBS in EAN rats. Moreover, celastrol down-regulated Th1 and Th17 cell proportions, and the levels of IFN-γ, TBX21, IL-18, RORγT, IL-17, and IL-23 in EAN rats. Meanwhile, the levels of TLR4, p-NF-κB, and p-STAT3 were decreased by celastrol. Taken together, celastrol could restrain Th1/Th17 cell differentiation through inhibition of the TLR4/NF-κB/STAT3 pathway in EAN rats. Our findings suggest that celastrol may exert therapeutic effects on GBS by suppressing TLR4/NF-κB/STAT3 pathway-mediated Th1/Th17 cell differentiation.


Assuntos
Síndrome de Guillain-Barré , Ratos , Animais , Síndrome de Guillain-Barré/tratamento farmacológico , Síndrome de Guillain-Barré/patologia , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/uso terapêutico , NF-kappa B/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Células Th17/metabolismo , Receptor 4 Toll-Like , Diferenciação Celular , Interleucina-23/metabolismo , Interleucina-23/farmacologia , Interleucina-23/uso terapêutico
16.
Adv Sci (Weinh) ; 10(3): e2205462, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453571

RESUMO

Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin ß3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.


Assuntos
Neoplasias Pulmonares , Sirtuína 2 , Humanos , Sirtuína 2/genética , Sirtuína 2/metabolismo , Receptor 2 Toll-Like/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Microambiente Tumoral
17.
Int J Nanomedicine ; 17: 4433-4448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172006

RESUMO

Introduction: Bladder cancer (BCa) is among the most prevalent cancers worldwide. However, the effectiveness of intravesical therapy for BCa is limited due to the short dwell time and the presence of the permeation barrier. Methods: Nanocomplexes were self-assembled between DNA and hendeca-arginine peptide (R11). Stepwise intravesical instillation of R11 and the generated nanocomplexes significantly enhanced the targeting capacity and penetration efficiency in BCa therapy. The involved mechanism of cellular uptake and penetration of the nanocomplexes was determined. The therapeutic effect of the nanocomplexes was verified preclinically in murine orthotopic BCa models. Results: Nanocomplexes exhibited the best BCa targeting efficiency at a nitrogen-to-phosphate (NP) ratio of 5 but showed a lack of stability during cellular uptake. The method of stepwise intravesical instillation not only increased the stability and target specificity of the DNA component but also caused the delivered DNA to more effectively penetrate into the glycosaminoglycan layer and plasma membrane. The method promotes the accumulation of the delivered DNA in the clathrin-independent endocytosis pathway, directs the intracellular trafficking of the delivered DNA to nonlysosome-localized regions, and enables the intercellular transport of the delivered DNA via a direct transfer mechanism. In preclinical trials, our stepwise method was shown to remarkably enhance the targeting and penetration efficiency of DNA in murine orthotopic BCa models. Conclusion: With this method, a stepwise intravesical instillation of self-assembled nanocomplexes, which are generated from hendeca-arginine peptides, was achieved; thus, this method offers an effective strategy to deliver DNA to target and penetrate BCa cells during gene therapy and warrants further development for future intravesical gene therapy in the clinical context.


Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Arginina/uso terapêutico , Clatrina , DNA/genética , Terapia Genética , Glicosaminoglicanos , Humanos , Camundongos , Nitrogênio , Peptídeos/uso terapêutico , Fosfatos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo
18.
Acta Biomater ; 152: 546-561, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36031034

RESUMO

The development of new diagnostic imaging and precise treatment methods for glioblastoma multiforme (GBM) is significant to improve patients' quality of life and prolong their survival time. Herein, we proposed a photoacoustic imaging (PAI)-guided GBM high-efficient photothermal therapy (PTT) based on a second near-infrared (NIR-II) absorptive polymer (PDTP-TBZ) conjugated with intense electron donor dithienopyrrole (DTP) and strong electron acceptor thiadiazolobenzotriazole (TBZ). By nanoprecipitation, PDTP-TBZ can form into nanoparticles (PT NPs), and c(RGDfK) cyclic peptide with integrin-specific targeting was then modified on the surface of PT NPs to obtain the ability of active targeting GBM multifunctional nano-reagent (cRGD@PT NPs). Both in vitro and in vivo experiments demonstrated that cRGD@PT NPs as NIR-II GBM phototheranostic reagents can greatly improve the enrichment rate at tumor sites under PAI monitoring, and carry out precise NIR-II PTT with high effective tumor cell phototoxicity and high biological safety. Thus, cRGD@PT NPs have great potential for the future GBM phototheranostic application in clinic. STATEMENT OF SIGNIFICANCE: In this work, we successfully constructed an intense electron donor dithienopyrrole (DTP) with a strong electron acceptor thiadiazolobenzotriazole (TBZ) into a novel NIR-II optical absorptive conjugated polymer (PDTP-TBZ). Then, the c(RGDfK) cyclic peptide was modified on the surface of PT NPs to obtain multifunctional nanodiagnostic reagents (cRGD@PT NPs) that can effectively target GBM neovascularization and tumor cells. Both in vitro and in vivo experiments demonstrate that cRGD@PT NPs possess high photothermal conversion efficiency and practical photoacoustic imaging capability under 1064 nm laser irradiation. The results of this work suggested that cRGD@PT NPs have great potential in efficient NIR-II PTT guided by accurate PAI, which provide a good perspective for the treatment and diagnosis of GBM.


Assuntos
Glioblastoma , Técnicas Fotoacústicas , Diagnóstico por Imagem , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Integrinas , Peptídeos Cíclicos/farmacologia , Técnicas Fotoacústicas/métodos , Fototerapia , Terapia Fototérmica , Polímeros/farmacologia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA