Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.306
Filtrar
1.
Ann Gen Psychiatry ; 23(1): 16, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720347

RESUMO

BACKGROUND: Adolescents with depression who engage in non-suicidal self harming behaviors are more likely to adopt negative coping strategies when faced with negative events. Therefore, these patients should be introduced to positive coping strategies. Evidences have showed that mindfulness-based interventions can positively impact the psychology of patients with mental disorders. This study was to explore the impact of a combination of mindfulness therapy and mentalization-based family therapy (MBFT) on suicidal ideation in adolescents with depressive disorder. METHODS: Eighty adolescent patients with depression and suicidal ideation admitted to our hospital from September 2021 to February 2022 were selected as subjects. They were divided into a control group and a study group using the random number table method, with each group comprising 40 subjects. The control group received MBFT, whereas the study group received both mindfulness therapy and MBFT. The psychological status and suicidal ideations of the two groups were compared before and after the intervention. RESULTS: The psychological health scores of both groups of patients were lower after the intervention, with the scores of the study group being lower than those of the control group (P < 0.05). The scores on the suicidal ideation scales for both groups were lower after intervention, and the study group scored lower than the control group (P < 0.05). The absolute values of the differences in psychological health scale scores and suicidal ideation scale scores before and after the intervention were higher in the study group than in the control group (P < 0.05). CONCLUSION: The combination of mindfulness therapy and MBFT can improve the psychological condition of adolescents with depression, reduce their suicidal ideations, and help them develop a healthy and positive outlook toward life, making this method worthy of clinical recommendation.

2.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712127

RESUMO

GCN2 is a conserved receptor kinase activating the Integrated Stress Response (ISR) in eukaryotic cells. The ISR kinases detect accumulation of stress molecules and reprogram translation from basal tasks to preferred production of cytoprotective proteins. GCN2 stands out evolutionarily among all protein kinases due to the presence of a h istidyl t R NA s ynthetase-like (HRSL) domain, which arises only in GCN2 and is located next to the kinase domain. How HRSL contributes to GCN2 signaling remains unknown. Here we report a 3.2 Å cryo-EM structure of HRSL from thermotolerant yeast Kluyveromyces marxianus . This structure shows a constitutive symmetrical homodimer featuring a compact helical-bundle structure at the junction between HRSL and kinase domains, in the core of the receptor. Mutagenesis demonstrates that this junction structure activates GCN2 and indicates that our cryo-EM structure captures the active signaling state of HRSL. Based on these results, we put forward a GCN2 regulation mechanism, where HRSL drives the formation of activated kinase dimers. Remaining domains of GCN2 have the opposite role and in the absence of stress they help keep GCN2 basally inactive. This autoinhibitory activity is relieved upon stress ligand binding. We propose that the opposing action of HRSL and additional GCN2 domains thus yields a regulated ISR receptor. Significance statement: Regulation of protein synthesis (translation) is a central mechanism by which eukaryotic cells adapt to stressful conditions. In starving cells, this translational adaptation is achieved via the receptor kinase GCN2, which stays inactive under normal conditions, but is switched on under stress. The molecular mechanism of GCN2 switching is not well understood due to the presence of a structurally and biochemically uncharacterized h istidyl t R NA s ynthetase-like domain (HRSL) at the core of GCN2. Here we use single-particle cryo-EM and biochemistry to elucidate the structure and function of HRSL. We identify a structure at the kinase/HRSL interface, which forms crossed helices and helps position GCN2 kinase domains for activation. These data clarify the molecular mechanism of GCN2 regulation.

3.
Bioresour Technol ; 402: 130801, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710419

RESUMO

The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.

4.
J Colloid Interface Sci ; 668: 448-458, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691955

RESUMO

People have been focusing on how to improve the specific capacity and cycling stability of lithium-sulfur batteries at room temperature, however, on some special occasions such as cold cities and aerospace fields, the operating temperature is low, which dramatically hinders the performance of batteries. Here, we report an iron carbide (Fe3C)/rGO composite as electrode host, the Fe3C nanoparticles in the composite have strong adsorption and high catalytic ability for polysulfide. The rGO makes the distribution of Fe3C nanoparticles more disperse, and this specific structure makes the deposition of Li2S more uniform. Therefore, it realizes the rapid transformation and high performance of lithium-sulfur batteries at both room and low temperatures. At room temperature, after 100 cycles at 1C current density, the reversible specific capacity of the battery can be stabilized at 889 ± 7.1 mAh/g. Even at -40 °C, in the first cycle battery still emits 542.9 ± 3.7 mAh/g specific capacity. This broadens the operating temperature for lithium-sulfur batteries and also provides a new idea for the selection of host materials for sulfur in low-temperature lithium-sulfur batteries.

5.
Nat Methods ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664529

RESUMO

Addressing interfacial effects during specimen preparation in cryogenic electron microscopy remains challenging. Here we introduce ESI-cryoPrep, a specimen preparation method based on electrospray ionization in native mass spectrometry, designed to alleviate issues associated with protein denaturation or preferred orientation induced by macromolecule adsorption at interfaces. Through fine-tuning spraying parameters, we optimized protein integrity preservation and achieved the desired ice thickness for analyzing target macromolecules. With ESI-cryoPrep, we prepared high-quality cryo-specimens of five proteins and obtained three-dimensional reconstructions at near-atomic resolution. Our findings demonstrate that ESI-cryoPrep effectively confines macromolecules within the middle of the thin layer of amorphous ice, facilitating the preparation of blotting-free vitreous samples. The protective mechanism, characterized by the uneven distribution of charged biomolecules of varying sizes within charged droplets, prevents the adsorption of target biomolecules at air-water or graphene-water interfaces, thereby avoiding structural damage to the protein particles or the introduction of dominant orientation issues.

6.
BMC Microbiol ; 24(1): 130, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643095

RESUMO

BACKGROUND: Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS: In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1ß) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS: We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.


Assuntos
Monócitos , Mycobacterium bovis , Humanos , Vacina BCG , Imunidade Treinada , Proteínas Proto-Oncogênicas c-akt/genética , Células THP-1 , Fosfatidilinositol 3-Quinases , Citocinas
7.
Chin J Integr Med ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676828

RESUMO

The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.

8.
Heliyon ; 10(7): e29322, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623240

RESUMO

Background: The long-term prognosis for patients with osteosarcoma (OS) metastasis remains unfavourable, highlighting the urgent need for research that explores potential biomarkers using innovative methodologies. Methods: This study explored potential biomarkers for OS metastasis by analysing data from the Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases. The synthetic minority oversampling technique (SMOTE) was employed to tackle class imbalances, while genes were selected using four feature selection algorithms (Monte Carlo feature selection [MCFS], Borota, minimum-redundancy maximum-relevance [mRMR], and light gradient-boosting machine [LightGBM]) based on the gene expression matrix. Four machine learning (ML) algorithms (support vector machine [SVM], extreme gradient boosting [XGBoost], random forest [RF], and k-nearest neighbours [kNN]) were utilized to determine the optimal number of genes for building the model. Interpretable machine learning (IML) was applied to construct prediction networks, revealing potential relationships among the selected genes. Additionally, enrichment analysis, survival analysis, and immune infiltration were performed on the featured genes. Results: In DS1, DS2, and DS3, the IML algorithm identified 53, 45, and 46 features, respectively. Using the merged gene set, we obtained a total of 79 interpretable prediction rules for OS metastasis. We subsequently conducted an in-depth investigation on 39 crucial molecules associated with predicting OS metastasis, elucidating their roles within the tumour microenvironment. Importantly, we found that certain genes act as both predictors and differentially expressed genes. Finally, our study unveiled statistically significant differences in survival between the high and low expression groups of TRIP4, S100A9, SELL and SLC11A1, and there was a certain correlation between these genes and 22 various immune cells. Conclusions: The biomarkers discovered in this study hold significant implications for personalized therapies, potentially enhancing the clinical prognosis of patients with OS.

9.
Eur J Clin Pharmacol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639762

RESUMO

PURPOSE: Clozapine is the effective therapy for treatment-refractory schizophrenia. However, the use of clozapine is limited by its adverse effects. As propranolol is frequently used for the prevention and treatment of clozapine-induced tachycardia, we performed a meta-analysis to evaluate the effects of propranolol on steady state pharmacokinetics of clozapine in schizophrenic patients. METHODS: We included 16 retrospective studies on the effects of propranolol on steady state pharmacokinetics of clozapine in schizophrenic patients, with data from both generic and brand name treatment phases in eight clozapine bioequivalence studies conducted in a single center in China from 2018 to 2022. Review Manager 5.4 was used for meta-analysis of the included studies. RESULTS: The SMDs with 95% CIs of AUC0-12, Cmax,ss, C, and C were calculated to be 0.44 (0.23, 0.64), 0.40 (0.20, 0.61), 0.43 (0.22, 0.63), and 0.44 (0.23, 0.64), respectively. These findings proved that combination with propranolol would increase the systemic exposure of clozapine. T1/2 of clozapine was significantly longer in the presence of propranolol than in the absence of propranolol (SMD = 0.32, 95% CI [0.12, 0.52], p = 0.002). There was no statistically significant difference for T of clozapine in the presence or absence of propranolol (SMD = - 0.05, 95% CI [- 0.25, 0.15], p = 0.63). CONCLUSION: The combination with propranolol could significantly increase systemic exposure and extended T1/2 of clozapine, and thus need to be considered in prescribing decisions.

10.
Sci Rep ; 14(1): 7652, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561456

RESUMO

Considering the effect of SIRT1 on improving myocardial fibrosis and GAS5 inhibiting occurrence and development of myocardial fibrosis at the cellular level, the aim of the present study was to investigate whether LncRNA GAS5 could attenuate cardiac fibrosis through regulating mir-217/SIRT1, and whether the NLRP3 inflammasome activation was involved in this process. Isoprenaline (ISO) was given subcutaneously to the male C57BL/6 mice to induce myocardial fibrosis and the AAV9 vectors were randomly injected into the left ventricle of each mouse to overexpress GAS5. Primary myocardial fibroblasts (MCFs) derived from neonatal C57BL/6 mice and TGF-ß1 were used to induce fibrosis. And the GAS5 overexpressed MCFs were treated with mir-217 mimics and mir-217 inhibitor respectively. Then the assays of expression levels of NLRP3, Caspase-1, IL-1ß and SIRT1 were conducted. The findings indicated that the overexpression of GAS5 reduced the expression levels of collagen, NLRP3, Capase-1, IL-1ß and SIRT1 in ISO treated mice and TGF-ß1 treated MCFs. However, this effect was significantly weakened after mir-217 overexpression, but was further enhanced after knockdown of mir-217. mir-217 down-regulates the expression of SIRT1, leading to increased activation of the NLRP3 inflammasome and subsequent pyroptosis. LncRNA GAS5 alleviates cardiac fibrosis induced via regulating mir-217/SIRT1 pathway.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isoproterenol/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamassomos , Sirtuína 1/genética , Camundongos Endogâmicos C57BL , Fibrose
12.
Cell Res ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605177

RESUMO

The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.

13.
Cell Death Differ ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594444

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

14.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578989

RESUMO

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Assuntos
Vacina BCG , Tuberculose , Humanos , Ácido Linoleico , Imunidade Treinada , Multiômica , Adjuvantes Imunológicos/farmacologia
15.
J Mater Chem B ; 12(18): 4409-4426, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38630533

RESUMO

Spinal cord injury (SCI) usually induces profound microvascular dysfunction. It disrupts the integrity of the blood-spinal cord barrier (BSCB), which could trigger a cascade of secondary pathological events that manifest as neuronal apoptosis and axonal demyelination. These events can further lead to irreversible neurological impairments. Thus, reducing the permeability of the BSCB and maintaining its substructural integrity are essential to promote neuronal survival following SCI. Tetramethylpyrazine (TMP) has emerged as a potential protective agent for treating the BSCB after SCI. However, its therapeutic potential is hindered by challenges in the administration route and suboptimal bioavailability, leading to attenuated clinical outcomes. To address this challenge, traditional Chinese medicine, TMP, was used in this study to construct a drug-loaded electroconductive hydrogel for synergistic treatment of SCI. A conductive hydrogel combined with TMP demonstrates good electrical and mechanical properties as well as superior biocompatibility. Furthermore, it also facilitates sustained local release of TMP at the implantation site. Furthermore, the TMP-loaded electroconductive hydrogel could suppress oxidative stress responses, thereby diminishing endothelial cell apoptosis and the breakdown of tight junction proteins. This concerted action repairs BSCB integrity. Concurrently, myelin-associated axons and neurons are protected against death, which meaningfully restore neurological functions post spinal cord injury. Hence, these findings indicate that combining the electroconductive hydrogel with TMP presents a promising avenue for potentiating drug efficacy and synergistic repair following SCI.


Assuntos
Hidrogéis , Neurônios , Pirazinas , Traumatismos da Medula Espinal , Pirazinas/química , Pirazinas/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Animais , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos , Medula Espinal/efeitos dos fármacos , Condutividade Elétrica , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
16.
Curr Med Imaging ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494938

RESUMO

OBJECTIVE: HAA is a significant risk factor in complex CoA patients. We conducted a retrospective study to explore the relationship between HAA and other cardiovascular factors. METHODS: We analyzed 103 patients diagnosed with complex CoA using CT angiography and echocardiography. Aortic diameter was measured at six levels, and severe coarctation was defined as coarctation site to diaphragmatic level ratio (CDR) < 50%. Correlations between non-HAA and HAA groups were assessed. Univariate and multivariate logistic regression identified HAA risk factors. RESULTS: Among 103 children with complex CoA, 55 were in the non-HAA group and 48 in the HAA group. The incidence of PDA (56.3% vs. 32.7%, p < 0.05), severe coarctation (CDR < 50%, 81.3% vs. 34.5%, p < 0.01), and collateral arteries (39.6% vs. 0, p < 0.01) were higher in the HAA group than one in the non-HAA group. The aortic arch size was positively correlated with age and negatively correlated with severe coarctation, VSD, collateral arteries, and left heart dysfunction. Logistic regression results showed that collateral arteries were risk factors for the whole aortic arch (proximal arch OR = 11.458; p < 0.01, distal arch OR = 4.211; p < 0.05, and isthmus OR = 11.744; p < 0.01), severe coarctation (OR = 6.653; p < 0.01), and left heart dysfunction (OR = 5.149; p < 0.01) associated with isthmus hypoplasia. CONCLUSION: This study highlights the prevalence of HAA in complex CoA patients and its associations with various cardiovascular factors. These insights improve diagnosis and treatment approaches.

17.
Sci Total Environ ; 926: 171978, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537813

RESUMO

Low temperatures limit the denitrification wastewater in activated sludge systems, but this can be mitigated by addition of redox mediators (RMs). Here, the effects of chlorophyll (Chl), 1,2-naphthoquinone-4-sulfonic acid (NQS), humic acid (HA), and riboflavin (RF), each tested at three concentrations, were compared for denitrification performance at low temperature, by monitoring the produced extracellular polymeric substances (EPS), and characterizing microbial communities and their metabolic potential. Chl increased the denitrification rate most, namely 4.12-fold compared to the control, followed by NQS (2.62-fold increase) and HA (1.35-fold increase), but RF had an inhibitory effect. Chl promoted the secretion of tryptophan-like and tyrosine-like proteins in the EPS and aided the conversion of protein from tightly bound EPS into loosely bound EPS, which improved the material transfer efficiency. NQS, HA, and RF also altered the EPS components. The four RMs affected the microbial community structure, whereby both conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT) were key taxa. Among them, CRAT members interacted most with the other taxa. Chl promoted Flavobacterium enrichment in low-temperature activated sludge systems. In addition, Chl promoted the abundance of nitrate reduction genes narGHI and napAB and of nitrite reduction genes nirKS, norBC, and nosZ. Moreover, Chl increased abundance of genes involved in acetate metabolism and in the TCA cycle, thereby improving carbon source utilization. This study increases our understanding of the enhancement of low-temperature activated sludge by RMs, and demonstrates positive effects, in particular by Chl.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Desnitrificação , Polímeros/química , Temperatura , Oxirredução , Reatores Biológicos/microbiologia , Nitrogênio
18.
Plast Reconstr Surg ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38546700

RESUMO

BACKGROUND: The success of upper blepharoplasty depends on both surgeon experience and skill as well as patient factors. Therefore, we aimed to identify patient-specific characteristics that may contribute to poor prognoses by analyzing data derived from patients with various deformities after undergoing upper blepharoplasty. METHODS: This study included 202 patients who underwent revision surgery for upper blepharoplasty. We explored relationships between types of deformities before revisions and relevant patient factors before initial surgery using statistical analyses. RESULTS: Age > 30 years, thick upper lid skin, medial epicanthus, and other patient factors were significantly associated with the deformities. Asymmetrical, disappeared, shallow, and low creases were the most prevalent deformities. For these four most prevalent deformities, the concordance indices and 95% confidence limits of the risk prediction models were 0.654 (0.575-0.734), 0.724 (0.637-0.810), 0.783 (0.702-0.863), and 0.750 (0.655-0.844), respectively. CONCLUSIONS: Among the four most prevalent prognostic deformities, significant patient factors included medial epicanthus, thick upper eyelid skin, weak levator palpebrae superioris, age > 30 y, and a short gap between eyes and brows. We also attempted to clarify the clinical importance of these patient factors. Our findings provide a guide and reference for future investigations into upper blepharoplasty.

19.
Small ; : e2312098, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461523

RESUMO

Double-borylated multiple-resonance (MR) skeletons are promising templates for high performance, while the chemical design space is relatively limited. Peripheral segments are often used to decorate/fuse MR skeletons and modulate the photophysics but they can also cause unwanted spectral broadening. Herein, a narrowband MR emitter ICzDBA by fusing an MR-featured donor segment indolocarbazole into a double-borylated MR skeleton is developed. In ICzDBA, the nitrogen atom located away from the core benzene ring can also contribute to the generation of the overall MR-featured distribution through the long-range conjugation effect, along with the other boron/nitrogen atoms on the phenyl center. Thus, ICzDBA in toluene displays a narrowband emission peaking at 507 nm with a full width at half maximum of merely 20 nm (0.09 eV). Moreover, organic light-emitting diode devices using ICzDBA emitter exhibit ultrapure green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.27, 0.70) and a high external quantum efficiency of 32.5%. These results manifest the importance of MR characters of peripheral decorations/fusions in preserving the narrowband features of MR skeletons, which provides a solution for further expanding MR structures with well-maintained narrowband characters.

20.
Heliyon ; 10(5): e27191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468936

RESUMO

Backgrounds: This study aims to explore the clinical value of P4HA2 (prolyl 4-hydroxylase subunit alpha 2) in Osteosarcoma (OSC), and assess its potential to provide directions and clues for the practice of precision nursing. Methods: The GSE73166 and GSE16088 datasets were used to explore the P4HA2 expression in OSC. We then used the clinical data of patients obtaining from TARGET database to assess the prognostic value of P4HA2 in OSC. We also evaluated the predictive value of prognostic model based on P4HA2-related genes. Further, GSEA analysis was performed to explore related pathways. Results: The P4HA2 mRNA expression was higher in OSC than that in normal tissues and other bone cancer samples. Survival analysis found that P4HA2 high expression caused poor overall survival (OS) of patients with OSC and P4HA2 presented a favorable performance for predicting OS. Specifically, P4HA2 high expression statistically influenced the OS of patients with age≥15 years old and those with or without metastasis. Cox regression analysis indicated the independent prognostic value of P4HA2 in OSC, and nomogram analysis revealed its significant contribution to the survival probability of patients. We further established a prognostic model based on P4HA2-related genes, finding that prognostic model had a good prediction ability on OS. These results supported the clinical significance of P4HA2 in OSC. GSEA analysis suggested that P4HA2 was significantly related to the MAPK signaling pathway. In addition, P4HA2-associated natural killer cell-mediated cytotoxicity and T cell receptor signaling pathway were also predicted. Conclusions: This study revealed that P4HA2 can serve as an important prognostic biomarker for OSC patients, and it may become a promising therapeutic target in OSC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA