Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023129

RESUMO

Single-dispersed atoms (SDAs) as catalysts have drawn extensive attention due to their ultimate atom utilization efficiency and desirable catalytic capability. Atomic clusters (ACs) with potential multiple enzyme-like activities also display great practicability in catalysis-based biosensing. In this work, hybrid Mn ACs/SDAs were implanted in the frameworks of defect-engineered MIL 101(Cr) modulated by excess acetic acid, with a high loading capability of 13.9 wt %. Distinctively, Mn SDAs display weak superoxide dismutase (SOD)-like activity for specifically eliminating superoxide anion (O2•-), while Mn ACs/SDAs display both catalase-like and SOD-like activities for remarkable elimination of total reactive oxygen species (ROS) due to the cooperative effect of the two atom-scale catalytic sites. Thus, Mn ACs/SDAs can efficiently inhibit the chemiluminescent (CL) emission of multiple ROS-mediated luminol systems with a superior quenching rate of 85.5%. To validate the practicability of Mn ACs/SDAs for a sensitive CL assay, an immunoassay method was established to detect acetamiprid by using Mn ACs/SDAs as signal quenchers, which displayed a quantification range of 10 pg mL-1-25 ng mL-1 and a detection limit of 3.3 pg mL-1. This study paves an avenue for developing ACs/SDAs with multiple antioxidant activities that are suitable for application in biosensing.

2.
Anal Chim Acta ; 1282: 341909, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923406

RESUMO

BACKGROUND: Dual atomic site catalysts (DASCs) have aroused extensive interest in analytical chemistry on account of the superb catalytic activity caused by the highly-exposed active centers and synergistic effect of adjacent active centers. The reported protocols for preparing DASCs usually involve harsh conditions such as acid/base etching and high-temperature calcination, leading to unfavorable water dispersity and restricted application. It is crucial to develop DASCs with satisfactory water dispersity, improved stability, and mild preparation procedures to facilitate their application as signal probes in analytical chemistry. RESULTS: Formic acid was adopted as a modulator for preparing MOF-808 with abundant defective sites, which was used as the carrier for implanting Co atoms. Co DASCs with a special coordination structure of Co2-O10 and a high loading efficiency of 11.1 wt% were prepared with a mild solvothermal protocol. The resultant Co DASCs can significantly accelerate decay of H2O2 for forming numerous reactive oxygen radicals and boost chemiluminescent (CL) signal. Co DASCs at 1.0 µg mL-1 can enhance the CL signal of luminol-H2O2 system by about 5800 times. Thanks to their satisfactory water dispersity and excellent CL enhancement performance, they were used as ultra-sensitive CL signal probes for monitoring methicillin-resistant Staphylococcus aureus. The method shows a detection range of 102-107 CFU mL-1 and a detection limit of 47 CFU mL-1. Antibiotic susceptibility test was performed with the established CL method to prove its practicality. SIGNIFICANCE: The water dispersible Co DASCs prepared with facile and mild solvothermal protocol exhibit prominent peroxidase-like activity and can promote the production of reactive oxygen radicals for boosting CL signal. Therefore, this study paves an avenue for implanting DASCs in defect-engineered carrier to prepare signal probes suitable for development of ultra-sensitive CL analytical methods.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Luminol/química , Bactérias , Água
3.
Anal Chem ; 95(24): 9366-9372, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276189

RESUMO

Single-atom nanozymes (SANs) with highly exposed active sites and remarkable catalytic activity have shown noteworthy practicability in heterogeneous catalysis-based bioassay. Nevertheless, most of them were reported with peroxidase-like activity and ordinary loading capability. It is still a challenge to prepare high-loading SANs with desirable superoxide dismutase (SOD)-like activity. In this work, Mn SAN was successfully confined in the frameworks of Prussian blue analogues formed on Ti3C2 MXene sheets with the assistance of massive surfactants, which show a superior loading efficiency of 13.5 wt % (typically <2.0 wt %). The prepared Mn SAN exhibits desirable superoxide radical anion elimination capability because of its SOD-like activity. Moreover, due to the wide-spectrum absorption behavior of the carriers, Mn SAN shows a synergistically quenching efficiency up to 98.89% on the emission of the reactive oxygen species-mediated chemiluminescent (CL) system. Inspired by these features, a CL quenching method was developed on a lateral flow test strip platform by utilizing Mn SAN as a signal quencher and acetamiprid as a model analyte. The method for detecting acetamiprid shows a detection range of 1.0-10,000 pg mL-1 and a limit of detection of 0.3 pg mL-1. Its accuracy has been validated by detecting acetamiprid in medicinal herbs with acceptable recoveries. This work opens an avenue for preparing SANs with a surfactant-assisted protocol and pioneers the study of SANs with SOD-like activity in bioassay.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxido Dismutase/química , Espécies Reativas de Oxigênio , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA