Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Funct Biomater ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921522

RESUMO

OBJECTIVES: This study investigated a novel strategy for improving regenerative cartilage outcomes. It combines fractional laser treatment with the implantation of neocartilage generated from autologous dynamic Self-Regenerating Cartilage (dSRC). METHODS: dSRC was generated in vitro from harvested autologous swine chondrocytes. Culture was performed for 2, 4, 8, 10, and 12 weeks to study matrix maturation. Matrix formation and implant integration were also studied in vitro in swine cartilage discs using dSRC or cultured chondrocytes injected into CO2 laser-ablated or mechanically punched holes. Cartilage discs were cultured for up to 8 weeks, harvested, and evaluated histologically and immunohistochemically. RESULTS: The dSRC matrix was injectable by week 2, and matrices grew larger and more solid with time, generating a contiguous neocartilage matrix by week 8. Hypercellular density in dSRC at week 2 decreased over time and approached that of native cartilage by week 8. All dSRC groups exhibited high glycosaminoglycan (GAG) production, and immunohistochemical staining confirmed that the matrix was typical of normal hyaline cartilage, being rich in collagen type II. After 8 weeks in cartilage lesions in vitro, dSRC constructs generated a contiguous cartilage matrix, while isolated cultured chondrocytes exhibited only a sparse pericellular matrix. dSRC-treated lesions exhibited high GAG production compared to those treated with isolated chondrocytes. CONCLUSIONS: Isolated dSRC exhibits hyaline cartilage formation, matures over time, and generates contiguous articular cartilage matrix in fractional laser-created microenvironments in vitro, being well integrated with native cartilage.

2.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38746179

RESUMO

With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.

3.
Animal Model Exp Med ; 7(2): 145-155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525803

RESUMO

BACKGROUND: Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues. Vitamin E is an antioxidant with potential anti-fibroblastic effect. The aim of this study was to establish an arthrofibrosis rat model after joint replacement and assess the effects of vitamin E supplementation on joint fibrosis. METHODS: We simulated knee replacement in 16 male Sprague-Dawley rats. We immobilized the surgical leg with a suture in full flexion. The control groups were killed at 2 and 12 weeks (n = 5 per group), and the test group was supplemented daily with vitamin E (0.2 mg/mL) in their drinking water for 12 weeks (n = 6). We performed histological staining to investigate the presence and severity of arthrofibrosis. Immunofluorescent staining and α2-macroglobulin (α2M) enzyme-linked immunosorbent assay (ELISA) were used to assess local and systemic inflammation. Static weight bearing (total internal reflection) and range of motion (ROM) were collected for functional assessment. RESULTS: The ROM and weight-bearing symmetry decreased after the procedure and recovered slowly with still significant deficit at the end of the study for both groups. Histological analysis confirmed fibrosis in both lateral and posterior periarticular tissue. Vitamin E supplementation showed a moderate anti-inflammatory effect on the local and systemic levels. The vitamin E group exhibited significant improvement in ROM and weight-bearing symmetry at day 84 compared to the control group. CONCLUSIONS: This model is viable for simulating arthrofibrosis after joint replacement. Vitamin E may benefit postsurgical arthrofibrosis, and further studies are needed for dosing requirements.


Assuntos
Fibrose , Amplitude de Movimento Articular , Ratos Sprague-Dawley , Vitamina E , Animais , Vitamina E/farmacologia , Vitamina E/administração & dosagem , Vitamina E/uso terapêutico , Masculino , Ratos , Amplitude de Movimento Articular/efeitos dos fármacos , Artroplastia do Joelho , Artropatias/prevenção & controle , Artropatias/etiologia , Modelos Animais de Doenças
4.
Drug Resist Updat ; 74: 101079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518727

RESUMO

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS: The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS: High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION: Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Fatores de Transcrição , Animais , Humanos , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , RNA Circular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Plast Reconstr Surg ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548707

RESUMO

BACKGROUND: Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout (GalT-KO) pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. In this study, we compare outcomes between autografts and cold preserved xenografts in a rat sciatic model of nerve gap repair. METHODS: Fifty male Lewis rats had a 1 cm sciatic nerve defect repaired using either: autograft and suture (n=10); 1-week or 4-week cold preserved xenograft and suture (n=10 per group); 1-week or 4-week cold preserved xenograft and photochemical tissue bonding using a human amnion wrap (PTB/HAM) (n=10 per group). Rats with xenografts were given tacrolimus until 4 months post-operatively. At 4 and 7 months, rats were euthanized and nerve sections harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS: All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the 1-week cold preserved PTB/HAM group. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold preserved groups had significantly lower scores than the 4-week cold preserved suture group. CONCLUSIONS: Our results in the rat sciatic model suggest that GalT-KO nerve xenografts may be viable alternatives to autografts and demonstrate the need for further studies of long-gap repair and comparison with acellular nerve allografts. CLINICAL RELEVANCE: This proof-of-concept study in the rat sciatic model demonstrates that cold preserved GalT-KO porcine xenografts support axonal regeneration, as well as axonal viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.

6.
Heliyon ; 10(3): e25237, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352764

RESUMO

Objectives: To summarize current evidence about the influence of body composition on the prognosis of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) treatment. Methods: Public databases were systematically searched to identify relevant studies published from the inception of the database up to May 2023. Studies that evaluated the association between body composition and clinical outcomes in HCC patients who underwent TACE were included. A pre-designed table was applied to summarize relevant information. Meta-analysis was performed to estimate the association of body composition with overall survival. Results: Fourteen studies were included in this review, including 3631 patients (sample size range: 56-908, median 186). All body composition measurements (including skeletal muscle area, visceral and subcutaneous adipose area, and bone mineral density) were based on computer tomography. The commonly used parameter was skeletal muscle index at 3rd lumbar vertebra level (8/14). Three studies evaluated the correlations of body composition changes with the prognosis after TACE. Most studies (12/14) identified body composition parameters as an independent indicator for overall survival, progression-free survival, and treatment response rate. The hazard ratio of different body composition parameters ranged from 1.01 to 2.88, and hazard ratio of body composition changes ranged from 1.88 to 5.93. The pooled hazard ratio of sarcopenia for overall survival was 1.38 (95 %CI: 1.20-1.58). Conclusions: Body composition seems to be an important prognostic factor for a poorer clinical outcome after TACE treatment in patients with hepatocellular carcinoma. Future prospective studies with a larger sample size are required to confirm these findings. Registration study: This study has been prospectively registered at the PROSPERO platform (https://www.crd.york.ac.uk/prospero/) with the registration No. CRD42022345602.

7.
Drug Resist Updat ; 73: 101027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290407

RESUMO

AIMS: Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS: A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS: A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION: The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.


Assuntos
Histonas , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
8.
J Orthop Res ; 42(2): 460-473, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37609941

RESUMO

Periprosthetic joint infections occur in about 2% of patients who undergo primary total joint arthroplasty, a procedure performed over 1 million times in the United States. The gold standard of treatment is a two-stage revision. This study aimed to establish a two-stage procedure in a preclinical small animal model (rat) to test and compare the efficacy of an antibiotic-eluting material in managing infection. Joint replacement was simulated by transchondylarly implanting a polyethylene (PE) plug into the distal femur and a titanium screw in the proximal tibia. Methicillin-sensitive Staphylococcus aureus (MSSA) 108 CFU/mL was injected into the tibial canal and the joint space before wound closure. The control groups were killed on postoperative day (POD) 18 (n = 12) and on POD 42 (n = 4) to assess both early and later-stage outcomes in the control group. The test group underwent revision surgery on POD 18 for treatment using gentamicin-eluting polyethylene (GPE, n = 4) and was observed until POD 42 to evaluate the efficacy of treatment. Our results showed that the bone loss for the treatment group receiving GPE was significantly less than that of the control (p < 0.05), which was supported by the histology images and an AI-tool assisted infection rate evaluation. Gait metrics duty factor imbalance and hindlimb temporal symmetry were significantly different between the treatment and control groups on Day 42. This animal model was feasible for evaluating treatments for peri-prosthetic joint infections (PJI) with a revision surgery and specifically that revision surgery and local antibiotic treatment largely hindered the peri-prosthetic bone loss. Statement of clinical significance: This revision model of peri-prosthetic infection has the potential of comparatively evaluating prophylaxis and treatment strategies and devices. Antibiotic-eluting UHMWPE is devised as at tool in treating PJI while providing weight bearing and joint space preservation.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Ratos , Animais , Antibacterianos/uso terapêutico , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/cirurgia , Artrite Infecciosa/tratamento farmacológico , Gentamicinas/uso terapêutico , Reoperação , Polietilenos , Estudos Retrospectivos
9.
BMC Musculoskelet Disord ; 24(1): 854, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907937

RESUMO

BACKGROUND: Rodent models are commonly employed to validate preclinical disease models through the evaluation of postoperative behavior and allodynia. Our study investigates the dynamic interplay between pain and functional recovery in the context of traumatic osteotomy and surgical repair. Specifically, we established a rat model of tibial osteotomy, followed by internal fixation using a 5-hole Y-plate with 4 screws, to explore the hypothesis that histological bone healing is closely associated with functional recovery. OBJECTIVE: Our primary objective was to assess the correlation between bone healing and functional outcomes in a rat model of tibial osteotomy and plate fixation. METHODS: Seventeen male Sprague-Dawley rats underwent a metaphyseal transverse osteotomy of the proximal tibia, simulating a fracture-like injury. The resultant bone defect was meticulously repaired by realigning and stabilizing the bone surfaces with the Y-plate. To comprehensively assess recovery and healing, we performed quantitative and qualitative evaluations at 2, 4, 6, and 8 weeks post-surgery. Evaluation methods included micro-CT imaging, X-ray analysis, and histological examination to monitor bone defect healing. Concurrently, we employed video recording and gait analysis to evaluate functional recovery, encompassing parameters such as temporal symmetry, hindlimb duty factor imbalance, phase dispersion, and toe spread. RESULTS: Our findings revealed complete healing of the bone defect at 8 weeks, as confirmed by micro-CT and histological assessments. Specifically, micro-CT data showed a decline in fracture volume over time, indicating progressive healing. Histological examination demonstrated the formation of new trabecular bone and the resolution of inflammation. Importantly, specific gait analysis parameters exhibited longitudinal changes consistent with bone healing. Hindlimb duty factor imbalance, hindlimb temporal symmetry, and phase dispersion correlated strongly with the healing process, emphasizing the direct link between bone healing and functional outcomes. CONCLUSIONS: The establishment of this tibia osteotomy model underscores the association between bone healing and functional outcomes, emphasizing the feasibility of monitoring postoperative recovery using endpoint measurements. Our overarching objective is to employ this model for assessing the local efficacy of drug delivery devices in ameliorating post-surgical pain and enhancing functional recovery.


Assuntos
Consolidação da Fratura , Fraturas da Tíbia , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Osteotomia/métodos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Microtomografia por Raio-X , Placas Ósseas
10.
Eur J Radiol ; 166: 111015, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541183

RESUMO

OBJECTIVE: To systematically review the efficacy of radiomics models derived from computed tomography (CT) or magnetic resonance imaging (MRI) in preoperative prediction of the histopathological grade of hepatocellular carcinoma (HCC). METHODS: Systematic literature search was performed at databases of PubMed, Web of Science, Embase, and Cochrane Library up to 30 December 2022. Studies that developed a radiomics model using preoperative CT/MRI for predicting the histopathological grade of HCC were regarded as eligible. A pre-defined table was used to extract the data related to study and patient characteristics, characteristics of radiomics modelling workflow, and the model performance metrics. Radiomics quality score and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were applied for research quality evaluation. RESULTS: Eleven eligible studies were included in this review, consisting of 2245 patients (range 53-494, median 165). No studies were prospectively designed and only two studies had an external test cohort. Half of the studies (five) used CT images and the other half MRI. The median number of extracted radiomics features was 328 (range: 40-1688), which was reduced to 11 (range: 1-50) after feature selection. The commonly used classifiers were logistic regression and support vector machine (both 4/11). When evaluated on the two external test cohorts, the area under the curve of the radiomics models was 0.70 and 0.77. The median radiomics quality score was 10 (range 2-13), corresponding to 28% (range 6-36%) of the full scale. Most studies showed an unclear risk of bias as evaluated by QUADAS-2. CONCLUSION: Radiomics models based on preoperative CT or MRI have the potential to be used as an imaging biomarker for prediction of HCC histopathological grade. However, improved research and reporting quality is required to ensure sufficient reliability and reproducibility prior to implementation into clinical practice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Reprodutibilidade dos Testes , Meios de Contraste , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
11.
Cancers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509206

RESUMO

Around 80% of pancreatic ductal adenocarcinoma (PDAC) patients experience recurrence after curative resection. We aimed to develop a deep-learning model based on preoperative CT images to predict early recurrence (recurrence within 12 months) in PDAC patients. The retrospective study included 435 patients with PDAC from two independent centers. A modified 3D-ResNet18 network was used for a deep learning model construction. A nomogram was constructed by incorporating deep learning model outputs and independent preoperative radiological predictors. The deep learning model provided the area under the receiver operating curve (AUC) values of 0.836, 0.736, and 0.720 in the development, internal, and external validation datasets for early recurrence prediction, respectively. Multivariate logistic analysis revealed that higher deep learning model outputs (odds ratio [OR]: 1.675; 95% CI: 1.467, 1.950; p < 0.001), cN1/2 stage (OR: 1.964; 95% CI: 1.036, 3.774; p = 0.040), and arterial involvement (OR: 2.207; 95% CI: 1.043, 4.873; p = 0.043) were independent risk factors associated with early recurrence and were used to build an integrated nomogram. The nomogram yielded AUC values of 0.855, 0.752, and 0.741 in the development, internal, and external validation datasets. In conclusion, the proposed nomogram may help predict early recurrence in PDAC patients.

12.
J Control Release ; 361: 20-28, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451545

RESUMO

The high prevalence of opioid addiction and the shortcomings of systemic opioids has increased the pace of the search for alternative methods of pain management. The local delivery of pain medications has started to be used as a tool for pain management and to decrease the use of systemic opioids for these patients. Here, we explored an in-situ polymerizable hydrogel system for the local delivery of analgesics and nonsteroid anti-inflammatory drugs (NSAID) for orthopaedic applications. We synthesized a series of methacrylated oligomeric polyethylene glycol-co-lactic acid polymer using microwave radiation for the delivery of bupivacaine hydrochloride as an analgesic and ketorolac tromethamine as an NSAID. We determined drug elution and gel degradation profiles in vitro. Biocompatibility was assessed against osteoblasts in vitro and by histological analysis after subcutaneous implantation for 4 weeks in vivo. Intra-articular and systemic concentrations and pharmacokinetic parameters were estimated using a two-compartment pharmacodynamic model based on in-vitro elution profiles. This type of in-situ applicable hydrogels is promising for extending the local efficacy of pain medication and further reducing the need for opioids.


Assuntos
Analgésicos Opioides , Hidrogéis , Humanos , Hidrogéis/uso terapêutico , Polimerização , Anti-Inflamatórios não Esteroides , Analgésicos , Dor/tratamento farmacológico
13.
Nanomedicine ; 50: 102671, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054805

RESUMO

OBJECTIVE: Perineural invasion (PNI) is associated with local recurrence, distant metastasis, and a poor prognosis in pancreatic cancer. However, rare attempt was made to identified the PNI intraoperative. To facilitate precise R0 excision of the tumor, we planned to develop a fluorescent probe for intraoperative imaging of the PNI using GAP-43 as the target and indocyanine green (ICG) as the carrier. METHODS: The probe was created by binding peptide antibody and ICG. Its targeting was tested in vitro and in vivo using a co-culture model of PC12 and tumor cells to create an in vitro neural invasion model and a mouse sciatic nerve invasion model. The small animal imaging system and surgical navigation system confirmed the probe's potential clinical applicability. The sciatic nerve damage model was created to confirm the probe's targeting. RESULTS: We used the pancreatic cancer samples and the public database to confirm that GAP-43 was preferentially overexpressed in pancreatic cancer, particularly in PNI. PC12 cells showed high GAP-43RA-PEG-ICG probe-specific absorption after being co-cultured with tumor cells in vitro. In the sciatic nerve invasion experiment, animals in probe group displayed a significantly stronger fluorescence signal at the PNI compared to ICG-NP and the contralateral normal nerves groups. Although only 60 % of mice appeared to have R0 resections by the naked eye, small animal imaging systems and surgical fluorescence navigation systems could remove the tumor with R0 precision. The injury model used in the probe imaging experimental trials demonstrated that the probe was specifically targeted to the injured nerve, regardless of whether the injury was infiltrated by a tumor or physical. CONCLUSION: We developed the GAP-43Ra-ICG-PEG, an active-targeting near-infrared fluorescent (NIRF) probe, that specifically binds to GAP-43-positive neural cells in an in vitro model of PNI. The probe efficiently visualized PNI lesions in pancreatic cancer in preclinical models, opening up new possibilities for NIRF-guided pancreatic surgery, particularly for PNI patients.


Assuntos
Verde de Indocianina , Neoplasias Pancreáticas , Ratos , Camundongos , Animais , Corantes Fluorescentes , Proteína GAP-43 , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Neoplasias Pancreáticas
14.
Comput Math Methods Med ; 2023: 5424204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814805

RESUMO

Purpose: One subtype of hepatocellular carcinoma (HCC), with cytokeratin 19 expression (CK19+), has shown to be more aggressive and has a poor prognosis. However, CK19+ is determined by immunohistochemical examination using a surgically resected specimen. This study is aimed at establishing a radiomics signature based on preoperative gadoxetic acid-enhanced MRI for predicting CK19 status in HCC. Patients and Methods. Clinicopathological and imaging data were retrospectively collected from patients who underwent hepatectomy between February 2015 and December 2020. Patients who underwent gadoxetic acid-enhanced MRI and had CK19 results of histopathological examination were included. Radiomics features of the manually segmented lesion during the arterial, portal venous, and hepatobiliary phases were extracted. The 10 most reproducible and robust features at each phase were selected for construction of radiomics signatures, and their performance was evaluated by analyzing the area under the curve (AUC). The goodness of fit of the model was assessed by the Hosmer-Lemeshow test. Results: A total of 110 patients were included. The incidence of CK19(+) HCC was 17% (19/110). Alpha fetoprotein was the only significant clinicopathological variable different between CK19(-) and CK19(+) groups. A majority of the selected radiomics features were wavelet filter-derived features. The AUCs of the three radiomics signatures based on arterial, portal venous, and hepatobiliary phases were 0.70 (95% CI: 0.56-0.83), 0.83 (95% CI: 0.73-0.92), and 0.89 (95% CI: 0.82-0.96), respectively. The three radiomics signatures were integrated, and the fusion signature yielded an AUC of 0.92 (95% CI: 0.86-0.98) and was used as the final model for CK19(+) prediction. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the fusion signature was 0.84, 0.89, 0.88, 0.62, and 0.96, respectively. The Hosmer-Lemeshow test showed a good fit of the fusion signature (p > 0.05). Conclusion: The established radiomics signature based on preoperative gadoxetic acid-enhanced MRI could be an accurate and potential imaging biomarker for HCC CK19(+) prediction.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Queratina-19 , Estudos Retrospectivos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Biomarcadores
15.
Diagnostics (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766518

RESUMO

Histopathologic grade of hepatocellular carcinoma (HCC) is an important predictor of early recurrence and poor prognosis after curative treatments. This study aims to develop a radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting HCC histopathologic grade and to validate its predictive performance in an independent external cohort. Clinical and imaging data of 403 consecutive HCC patients were retrospectively collected from two hospitals (265 and 138, respectively). Patients were categorized into poorly differentiated HCC and non-poorly differentiated HCC groups. A total of 851 radiomics features were extracted from the segmented tumor at the hepatobiliary phase images. Three classifiers, logistic regression (LR), support vector machine, and Adaboost were adopted for modeling. The areas under the curve of the three models were 0.70, 0.67, and 0.61, respectively, in the external test cohort. Alpha-fetoprotein (AFP) was the only significant clinicopathological variable associated with HCC grading (odds ratio: 2.75). When combining AFP, the LR+AFP model showed the best performance, with an AUC of 0.71 (95%CI: 0.59-0.82) in the external test cohort. A radiomics model based on gadoxetic acid-enhanced MRI was constructed in this study to discriminate HCC with different histopathologic grades. Its good performance indicates a promise in the preoperative prediction of HCC differentiation levels.

16.
Biomater Sci ; 10(13): 3624-3636, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35647941

RESUMO

Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Gemcitabine (Gem) has been a key chemotherapy agent for pancreatic cancer treatment by suppressing cell proliferation and inducing apoptosis. However, the overexpression of inhibitors of apoptosis (IAP) family of proteins during the carcinogenesis of pancreatic cancer can develop resistance to chemotherapy treatment and result in poor efficacy. To achieve the synergistic combinations of multiple strategies for this dismal disease, we developed a robust nanomedicine system, consisting of a photodynamic therapeutic agent (chlorine e6, Ce6) and a pro-apoptotic peptide-Gem conjugate. To have spatiotemporally controlled drug release, the pro-apoptotic peptide-Gem conjugate was designed to have a vinyldithioether linker that was sensitive to reactive oxygen species (ROS). The nanomedicine was fabricated by the direct self-assembly of the pro-apoptotic peptide-Gem conjugate with Ce6. After being delivered into tumors, the nanomedicine disassembled and rapidly released Gem, Ce6, and the pro-apoptotic peptide upon light illumination (660 nm). Both in vitro and in vivo studies in pancreatic cancer models confirmed the tumor inhibition efficacy with low systemic toxicity to animals.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Pancreáticas/metabolismo , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pancreáticas
18.
Mol Cancer ; 21(1): 112, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538494

RESUMO

BACKGROUND: Although gemcitabine has been considered as the first-line drug for advanced pancreatic cancer (PC), development of resistance to gemcitabine severely limits the effectiveness of this chemotherapy, and the underlying mechanism of gemcitabine resistance remains unclear. Various factors, such as ATP binding cassette (ABC) transporters, microRNAs and their downstream signaling pathways are included in chemoresistance to gemcitabine. This study investigated the potential mechanisms of microRNAs and ABC transporters related signaling pathways for PC resistance to gemcitabine both in vivo and in vitro. METHODS: Immunohistochemistry and Western blotting were applied to detect the expression of ABC transporters. Molecular docking analysis was performed to explore whether gemcitabine interacted with ABC transporters. Gain-of-function and loss-of-function analyses were performed to investigate the functions of hsa-miR-3178 in vitro and in vivo. Bioinformatics analysis, Western blotting and dual-luciferase reporter assay were used to confirm the downstream regulatory mechanisms of hsa-miR-3178. RESULTS: We found that P-gp, BCRP and MRP1 were highly expressed in gemcitabine-resistant PC tissues and cells. Molecular docking analysis revealed that gemcitabine can bind to the ABC transporters. Hsa-miR-3178 was upregulated in gemcitabine resistance PANC-1 cells as compared to its parental PANC-1 cells. Moreover, we found that hsa-miR-3178 promoted gemcitabine resistance in PC cells. These results were also verified by animal experiments. RhoB was down-regulated in gemcitabine-resistant PC cells and it was a downstream target of hsa-miR-3178. Kaplan-Meier survival curve showed that lower RhoB expression was significantly associated with poor overall survival in PC patients. Rescue assays demonstrated that RhoB could reverse hsa-miR-3178-mediated gemcitabine resistance. Interestingly, hsa-miR-3178 promoted gemcitabine resistance in PC by activating the PI3K/Akt pathway-mediated upregulation of ABC transporters. CONCLUSIONS: Our results indicate that hsa-miR-3178 promotes gemcitabine resistance via RhoB/PI3K/Akt signaling pathway-mediated upregulation of ABC transporters. These findings suggest that hsa-miR-3178 could be a novel therapeutic target for overcoming gemcitabine resistance in PC.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Desoxicitidina , MicroRNAs , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína rhoB de Ligação ao GTP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismo , Gencitabina , Neoplasias Pancreáticas
19.
Arch Toxicol ; 96(7): 1951-1962, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445828

RESUMO

N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic metal chelator and antioxidant used in mercury poisoning. Recent studies have suggested that NBMI may also bind to other metals such as lead and iron. Since NBMI can enter the brain, we evaluated if NBMI removes excess iron from the iron-loaded brain and ameliorates iron-induced oxidative stress. First, NBMI exhibited preferential binding to ferrous (Fe2+) iron with a negligible binding affinity to ferric (Fe3+) iron, indicating a selective chelation of labile iron. Second, NBMI protected SH-SY5Y human neuroblastoma cells from the cytotoxic effects of high iron. NBMI also decreased cellular labile iron and lessened the production of iron-induced reactive oxygen species in these cells. Deferiprone (DFP), a commonly used oral iron chelator, failed to prevent iron-induced cytotoxicity or labile iron accumulation. Next, we validated the efficacy of NBMI in Hfe H67D mutant mice, a mouse model of brain iron accumulation (BIA). Oral gavage of NBMI for 6 weeks decreased iron accumulation in the brain as well as liver, whereas DFP showed iron chelation only in the liver, but not in the brain. Notably, depletion of brain copper and anemia were observed in BIA mice treated with DFP, but not with NBMI, suggesting a superior safety profile of NBMI over DFP for long-term use. Collectively, our study demonstrates that NBMI provides a neuroprotective effect against BIA and has therapeutic potential for neurodegenerative diseases associated with BIA.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Derivados de Benzeno , Encéfalo , Quelantes/farmacologia , Quelantes/uso terapêutico , Ferro/metabolismo , Neuroblastoma/metabolismo , Compostos de Sulfidrila
20.
Mol Ther Oncolytics ; 24: 636-649, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284628

RESUMO

Multidrug resistance (MDR) is the major cause of chemotherapy failure, which is usually caused by the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2. To date, no MDR modulator has been clinically approved. Here, we found that lazertinib (YH25448; a novel third-generation tyrosine kinase inhibitor [TKI]) could enhance the anticancer efficacy of MDR transporter substrate anticancer drugs in vitro,in vivo, and ex vivo. Mechanistically, lazertinib was shown to inhibit the drug efflux activities of ABCB1 and ABCG2 and thus increase the intracellular accumulation of the transporter substrate anticancer drug. Moreover, lazertinib was found to stimulate the ATPase activity of ABCB1/ABCG2 and inhibit the photolabeling of the transporters by 125I-iodoarylazidoprazosin (IAAP). However, lazertinib neither changed the expression or locolization of ABCB1 and ABCG2 nor blocked the signal pathway of Akt or Erk1/2 at a drug concentration effective for MDR reversal. Overall, our results demonstrate that lazertinib effectively reverses ABCB1- or ABCG2-mediated MDR by competitively binding to the ATP-binding site and inhibiting drug efflux function. This is the first report demonstrating the novel combined use of lazertinib and conventional chemotherapeutical drugs to overcome MDR in ABCB1/ABCG2-overexpressing cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA