Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Anim Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727196

RESUMO

Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase (LP) compared to the follicular phase (FP) in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor (VEGF), and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin ß4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.

2.
Int J Biol Macromol ; 270(Pt 2): 132243, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38744369

RESUMO

Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.

3.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Cadeias Pesadas de Miosina , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Diferenciação Celular , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Autofagia/fisiologia , Mioblastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Células Cultivadas , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular/genética
4.
J Sci Food Agric ; 104(6): 3256-3264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087413

RESUMO

BACKGROUND: Biogenic amines (BAs) in high concentrations are toxic and may cause a series of health symptoms. A sensitive measurement of BA levels is essential for human health. Capillary electrophoresis (CE) has emerged for the separation of eight BAs due to simple sample preparation and highly efficient separation. However, an important drawback for CE is low sensitivity. Magnetic solid-phase extraction (MSPE) has become a technique of interest owing to its brief operation and low solvent consumption. Hence, MSPE as a pretreatment has great potential to improve CE sensitivity for the analysis of BAs in complex food. RESULTS: Results showed that the Pt-Co-MWCNTs-COOH possessed strong magnetism, good reusability, and high adsorptive ability toward eight biogenic amines based on the hydrogen bonding between the -COOH of Pt-Co-MWCNTs-COOH and -NH2 groups of BAs. Using it as an adsorbent, a magnetic solid-phase extraction coupled with capillary electrophoresis (MSPE-CE) method was developed to effectively extract and sensitively analyze eight BAs. Under optimal conditions, the MSPE-CE method has wide linearities (10.0-1000.0 µg L-1 ) and low limits of detection (1.0-6.1 µg L-1 ). The accuracy of the developed method yielded recovery values from 82.07% to 102.58%. Meanwhile, the BAs contents in two samples were analyzed using the MSPE-CE method, with the results consistent with those detected by a high-performance liquid chromatography method. CONCLUSION: Given those advantages, the established MSPE-CE method promises the practical guidance of monitoring a variety of BAs and provides a foundation for the detection of other food hazards. © 2023 Society of Chemical Industry.


Assuntos
Aminas Biogênicas , Eletroforese Capilar , Humanos , Eletroforese Capilar/métodos , Cromatografia Líquida de Alta Pressão/métodos , Aminas Biogênicas/análise , Extração em Fase Sólida/métodos , Fenômenos Magnéticos , Limite de Detecção
5.
Nutr Rev ; 82(3): 374-388, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604108

RESUMO

Front-of-package (FOP) labels have been adopted in many countries to battle the obesity pandemic and its serious health consequences by providing clearer and easier-to-understand nutrition and health information. The effectiveness of FOP labels has been generally confirmed, with some contextual and individual factors modifying their effectiveness. Existing theories (eg, the dual-process theory) and shifting priorities for self-control, provide some explanations for the FOP label effect. However, the cognitive and neural mechanisms underlying the processing of FOP labels remain unknown. Here, a new model, namely, the neural model of FOP label processing, has been proposed to fill this gap by providing an integrated account of FOP label processing while simultaneously considering multiple important situational and individual factors in the same framework. This neural model is built on the core eating network (ie, the ventral reward pathway and the dorsal control pathway) for food cue processing and actual food consumption. The new model explains how FOP labels may facilitate attention, influence the core eating network, and thus alter food choices. It also demonstrates how motivation may modify FOP label processing in 2 ways: affecting attention (the indirect way) and changing the process of evaluating the food (the direct way). It further explains how some contextual and individual factors (eg, ego depletion, time pressure, and health knowledge) influence the process. Thus, the neural model integrates evidence from behavioral, eye-tracking, and neuroimaging studies into a single, integrated account, deepening understanding of the cognitive and neural mechanisms of FOP label processing. This model might facilitate consensus on the most successful FOP label. Moreover, it could provide insights for consumers, food industries, and policy makers and encourage healthy eating behaviors.


Assuntos
Comportamento do Consumidor , Rotulagem de Alimentos , Humanos , Rotulagem de Alimentos/métodos , Alimentos , Preferências Alimentares/psicologia , Atenção , Comportamento de Escolha , Valor Nutritivo
6.
Int J Biol Macromol ; 254(Pt 1): 127614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884231

RESUMO

An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Serina-Treonina Quinases TOR , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Desenvolvimento Muscular/genética , Mamíferos/genética
7.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947633

RESUMO

The successful establishment of endometrial receptivity is a key factor in ensuring the fertility of ewes and their economic benefits. Hu sheep have attracted attention due to their high fecundity and year-round estrus. In this study, we found that in the luteal phase, the uterine gland density, uterine coefficient, and number of uterine caruncles of high-fertility Hu sheep were higher than those of low-fertility Hu sheep. Thousands of differentially expressed genes were identified in the endometrium of Hu sheep with different fertility potential using RNA sequencing (RNA-Seq). Several genes involved in endometrial receptivity were screened using bioinformatics analysis. The qRT-PCR analysis further revealed the differential expression of cAMP reactive element binding protein-1 (CREB1) in the Hu sheep endometrium during the estrous cycle. Functionally, our results suggested that CREB1 significantly affected the expression level of endometrial receptivity marker genes, promoted cell proliferation by facilitating the transition from the G1 phase to the S phase, and inhibited cell apoptosis and autophagy. Moreover, we observed a negative linear correlation between miR-134-5p and CREB1 in the endometrium. In addition, CREB1 overexpression prevented the negative effect of miR-134-5p on endometrial stromal cell (ESC) growth. Taken together, these data indicated that CREB1 was regulated by miR-134-5p and may promote the establishment of uterine receptivity by regulating the function of ESCs. Moreover, this study provides new theoretical references for identifying candidate genes associated with fertility.


Assuntos
MicroRNAs , Feminino , Animais , Ovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Autofagia/genética , Apoptose/genética , Células Estromais/metabolismo
8.
FASEB J ; 37(11): e23273, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874265

RESUMO

N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.


Assuntos
Cabras , Metiltransferases , Animais , Feminino , Metiltransferases/genética , Metiltransferases/metabolismo , Cabras/metabolismo , Aurora Quinase B , Ciclina D1/genética , Ciclo Celular
9.
FASEB J ; 37(11): e23212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773760

RESUMO

As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.


Assuntos
MicroRNAs , Zearalenona , Animais , Feminino , Zearalenona/metabolismo , Zearalenona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/metabolismo , Cabras/metabolismo , Estresse Oxidativo , Transdução de Sinais
10.
Biomed Pharmacother ; 167: 115493, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734261

RESUMO

Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.

11.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445833

RESUMO

Pituitary gonadotropins perform essential functions in mammalian reproduction by stimulating gametogenesis and steroidogenesis in the ovaries and testicles. EZH2 is a histone methyltransferase that inhibits proliferation and aggravates apoptosis in stem cells subjected to pathological stimuli. However, the expression and molecular mechanisms of EZH2 in pituitary cells in vitro have not been extensively studied. In this study, the relative abundances of EZH2 mRNA (p < 0.01) and protein (p < 0.05) expression were larger in the pituitary cells of Hu sheep with relatively greater fecundity (GF) compared to those with lesser fecundity (LF). Loss-of-function examinations demonstrated that EZH2 gene knockdown led to an earlier induction of apoptosis in sheep pituitary cells (PCs). The relative abundance of CASP3, CASP9, and BAX was increased (p < 0.01), while BCL2's abundance was less decreased (p < 0.01) in PCs where there was EZH2 gene knockdown. Additionally, cell proliferation (p < 0.01) and viability (p < 0.01) were decreased in EZH2-knockdown sheep PCs, and the cell cycle was blocked compared to a negative control (NC). Notably, EZH2 gene knockdown led to reduced abundances of gonadotropin subunit gene transcripts (FSHß, p < 0.05) and reduced FSH release (p < 0.01) from PCs. EZH2 gene knockdown led to reduced phosphorylation of AKT, ERK, and mTOR (p < 0.01). The results suggest that EZH2 regulates pituitary cell proliferation, apoptosis, and FSH secretion through modulation of the AKT/ERK signaling pathway, providing a foundation for further study of pituitary cell functions.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Ovinos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Técnicas de Silenciamento de Genes , Transdução de Sinais/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Proliferação de Células/genética , Mamíferos/genética
12.
Front Microbiol ; 14: 1123448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275131

RESUMO

Bombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.

13.
FASEB J ; 37(7): e23044, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342905

RESUMO

RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.


Assuntos
Processamento Alternativo , Sinalização do Cálcio , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Cabras , Animais
14.
FASEB J ; 37(6): e22989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199674

RESUMO

Neuromedin S (NMS) is a neuroregulatory substance and has many important roles in regulating physiological functions in animal cells, while their specific functions and mechanisms in Leydig cells (LCs) of the testis remain unclear. The current study aims to investigate the role and potential mechanisms of NMS and its receptors in regulating steroidogenesis and proliferation in goat LCs. We found that NMS and its receptors were mainly expressed in LCs of goat testes at different ages (1-day-old, 3-month-old, and 9-month-old), and the highest expressions detected at age three months. NMS addition significantly enhanced the testosterone secretion, STAR, CYP11A1, 3BHSD, and CYP17A1 expressions, cell proliferation, and PCNA expression in vitro cultured goat LCs. Mechanistically, NMS addition increased G1/S cell population, the expressions of CCND1, CDK4 and CDK6, the activities of SOD2 and CAT, and enhanced the mitochondrial fusion, the production of ATP, and mitochondrial membrane potential, while inhibited cellular ROS production, and maintained a low ubiquitination level of mitochondrial proteins. Notably, these effects of NMS addition on goat LCs were suppressed by co-treatment with NMUR2 knockdown. Therefore, these data suggest that activating NMUR2 with NMS enhances testosterone production and cell proliferation in goat LCs through modulating mitochondrial morphology, function, and autophagy. These findings may provide a novel view of the regulatory mechanisms involved in male sexual maturation.


Assuntos
Cabras , Células Intersticiais do Testículo , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Cabras/metabolismo , Testosterona/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células
15.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048078

RESUMO

Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFß1) is involved in a variety of cellular processes, such as proliferation, differentiation, and apoptosis. However, little is known about the m6A-mediated TGFß1 regulation in myogenesis. Here, we observed an increase in endogenous TGFß1 expression and activity during myotube differentiation. However, the knockdown of TGFß1 inhibits the proliferation and induces cell apoptosis of myoblast. Moreover, we found that m6A in 5'-untranslated regions (5'UTR) of TGFß1 promote its decay and inhibit its expression, leading to the blockage of the TGFß1/SMAD2 signaling pathway. Furthermore, the targeted specific demethylation of TGFß1 m6A using dCas13b-FTO significantly increased the TGFß1-mediated activity of the SMAD2 signaling pathway, promoting myoblast proliferation. These findings suggest that TGFß1 is an essential regulator of myoblast growth that is negatively regulated by m6A. Overall, these results highlight the critical role of m6A-mediated post-transcriptional regulation in myogenesis.


Assuntos
Mioblastos , Transdução de Sinais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mioblastos/metabolismo , Proliferação de Células/genética , Desmetilação
16.
Appl Microbiol Biotechnol ; 107(5-6): 1751-1764, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800030

RESUMO

Lam16A is a novel GH16 ß-1,3-1,4-lichenase isolated from the genus Caldicellulosiruptor which can utilize untreated carbohydrate components of plant cell walls. Its catalytic module has been characterized that the six carbohydrate-binding modules (CBMs) were queued in the C-terminus, but their roles were still unclear. Here, full-length and CBM-truncated mutants of Lam16A were purified and characterized through heterologous expression in Escherichia coli. The profiles of these proteins, including the enzyme activity, degrading efficiency, substrate-binding affinity, and thermostability, were explored. Full-length Lam16A with six CBMs showed excellent thermostability and the highest activity against barley ß-glucan and laminarin with optimum pH of 6.5. The CBMs stimulated degrading ability of the catalytic module, especially against ß-1,3(4)-glucan-based polysaccharides. The released products from ß-1,3-1,4-glucan by Lam16A or its truncated mutants revealed an endo-type glycoside hydrolase. Lam16As exhibited strong binding affinities to the insoluble polysaccharides, especially Lam16A-1CBM. The degradation of yeast cell walls by Lam16A enzyme solution relative to the control reduced the absorbance values at OD800 by ~ 85% ± 1.2, enabling the release of up to ~ 0.057 ± 0.0039 µg/mL of the cytoplasmic protein into the supernatant, lowering the viability of the cells by ~ 70.3% ± 6.9, thus causing significant damage in the cell wall structure. Taken together, CBMs could influence the substrate specificity, thermal stability, and binding affinity of ß-1,3-1,4-glucanase. These results demonstrate the great potential of these enzymes to promote the bioavailability of ß-1,3-glucan oligosaccharides for health benefits. KEY POINTS: • Carbohydrate-binding modules strongly influenced the enzyme activity and binding affinity, and further impacted glycoside hydrolase activity. • Lam16A enzymes have sufficient ability to hydrolyze ß-1,3-1,4-glucan-based polysaccharides. • Lam16As provide a powerful tool to promote the bioavailability of ß-1,3-glucan oligosaccharides.


Assuntos
Polissacarídeos , beta-Glucanas , Polissacarídeos/metabolismo , beta-Glucanas/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
17.
Front Vet Sci ; 10: 1001621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798143

RESUMO

Introduction: This study aims to investigate the long-term effects of spirulina supplementation in a high-fat diet (HFD) on rumen morphology, rumen fermentation, and the composition of rumen microbiota in lambs. Spirulina is a blue-green microalgae that has been shown to have high nutritional value for livestock. Methods: Fifty-four lambs were randomly divided into three groups: a normal chow diet (NCD) group, a high-fat diet (HFD) group, and a high-fat diet supplemented with 3% spirulina (HFD+S) group. Rumen morphology, rumen fermentation, and rumen microbiota were analyzed at the end of the study. Results: Spirulina supplementation improved the concentration of volatile fatty acids and rumen papilla length. Additionally, there was a tendency for an increase in rumen weight and an upregulation of the genes Claudin-1, Claudin-4, and Occludin in the HFD+S group. Pyrosequencing of the 16S ribosomal RNA gene also showed that spirulina supplementation significantly changed the rumen microbiota composition in the HFD group, with a decrease in richness and diversity. Specifically, the relative abundance of Prevotella 9 and Megasphaera was significantly increased in the HFD group compared to the NCD group, while spirulina supplementation reversed these changes. Discussion: This study suggests that 3% spirulina supplementation can improve rumen development and fermentation, and effectively relieve rumen microbe disorders in lambs caused by a high-fat diet. However, further research is needed to confirm the findings and to examine the long-term effects of spirulina supplementation in different types of livestock and under different dietary conditions.

18.
Int J Biol Macromol ; 226: 730-745, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36526061

RESUMO

circRNAs have been found to be involved in the regulatory network of skeletal muscle development in studies. However, their precise functions and regulatory mechanisms remain unknown. The expression patterns and alterations of circRNAs in the longissimus dorsi muscle of two major developmental stages of goats (D75 fetus and D1 kid) were studied using high-throughput sequencing technology and bioinformatics tools in this study. In kid skeletal muscles, 831 differently expressed circRNAs were found, comprising 486 up-regulated circRNAs and 345 down-regulated circRNAs. In skeletal muscle, we focused on the highly expressed and variably expressed circUBE3A. CircUBE3A levels were discovered to be much higher in kid skeletal muscle and differentiated myoblasts. Knocking down circUBE3A resulted in a significant increase in cell proliferation and differentiation in goat myoblasts. CircUBE3A specifically binds to and inhibits miR-28-5p, boosting the expression of Hydroxyacyl Coenzyme A Dehydrogenase Beta (HADHB) and contributing to goat myoblast proliferation and differentiation, according to the mechanistic investigation. The above results indicated that circUBE3A could regulate HADHB expression by targeting miR-28-5p, consequently increasing goat myoblast proliferation and differentiation. Our findings offer fresh perspectives on goat breeding and growth regulation, as well as substantial theoretical basis.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Diferenciação Celular/genética , Mioblastos/metabolismo , Proliferação de Células/genética , Desenvolvimento Muscular/genética , Cabras/genética , Cabras/metabolismo
19.
Biomed Res Int ; 2022: 9125242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467891

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Transcriptoma , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica , Sequenciamento do Exoma
20.
Ecotoxicol Environ Saf ; 247: 114214, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327783

RESUMO

More and more discoveries have been made about the chronic toxic effects of aluminum, but the specific mechanism of action remains unclear. In this study, we explored the perturbation of aluminum on intestinal microflora and its effects on host and microbial metabolites through a more realistic nutrient absorption model. The microorganisms Turicibacter, Lactobacillus murinus, Lactobacillus_reuteri and Bifidobacterium pseudolongum may be the main targets of the aluminum affecting microbiota. Lysine, proline, putrescine, serotonin and cholesterol may be important metabolites affected by aluminum ions after the interference of intestinal flora composition, leading to abnormal metabolism pathways of amino acids and lipids in the body, and thus promoting inflammation and lesion. The possible mechanisms of aluminum action on the body: (1) Affecting immune cell response, ROS generation and production of a series of pro-inflammatory factors to promote inflammation; (2) Through the disturbance of intestinal microbiota composition structure, change the abundance of metabolites, and then affect amino acid metabolism, lipid metabolism pathways. The joint analysis of multiple omics showed significant difference in microbiome abundance and metabolomics expression between high dose group and the control group.


Assuntos
Alumínio , Metabolismo dos Lipídeos , Camundongos , Animais , Alumínio/toxicidade , Metabolômica , Inflamação/induzido quimicamente , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA