Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(2): e202200773, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36629332

RESUMO

Bletilla striata (Thunb.) Reichb.f. is a perennial herb with abundant active ingredients. Previous research mainly focused on its tubers, however, the study on flowers, especially the variation of active ingredient contents at different flowering stages, was rarely seen. This study analyzed the total phenols, flavonoids, polysaccharides, anthocyanins, and cyanidin-3-O-glucoside content of B. striata flowers which were in cultivated in Herb Garden of Zhejiang A&F University and collected in May, 2019, in order to investigate the changes in active ingredients and antioxidant capacity among different flowering stages (bud, initial, and full bloom). Changes in radical scavenging capability of DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), ABTS (2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate)), and hydroxy were analyzed. Significant differences in active ingredient content of flowers were detected among different flowering stages. The total phenolic content increased continuously during the entire flowering stage. The contents of total flavonoid, total polysaccharide, and cyanidin-3-O-glucoside reached peaks at the initial blooming stage and then fell as the flowering process continued. The antioxidant activity in initial stage was the highest than in any other flowering stages. Therefore, we conclude that the initial blooming stage is the best harvesting stage of B. striata flowers. This study provides a robust basis for the harvest and utilization of B. striata flowers in food, medical, and cosmetic industries.


Assuntos
Antioxidantes , Orchidaceae , Humanos , Antioxidantes/química , Antocianinas/análise , Flavonoides/química , Fenóis/química , Orchidaceae/química , Extratos Vegetais/química , Flores/química , Glucosídeos
2.
Langmuir ; 37(11): 3420-3427, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689360

RESUMO

The interaction of bitumen colloidal (a form of heavy oil) with inorganic solids, for example, mineral aggregates, in both air and water environments is ubiquitous in nature and engineering. However, our knowledge of the underlying physical mechanism of bitumen-/solid-wetting phenomena is still very limited. The current study aims to reveal how the mineralogy and topography of aggregate surfaces affect the wetting and water-induced dewetting of bitumen on aggregate surfaces. For this, contact angle tests were performed to measure the surface energies of bitumen and aggregate surfaces varying in both mineralogy and roughness. Based on the measurements, both qualitative and quantitative analyses were conducted for the interaction of bitumen/aggregate interface in air and water environments. Complete wetting and complete dewetting hold for the air/bitumen/aggregate and water/bitumen/aggregate interfaces, respectively. The negative interfacial adhesive energy for the air/bitumen/aggregate interface and the interfacial debonding energy for the water/bitumen/aggregate interface imply that both bitumen wetting and water-induced bitumen dewetting on flat surfaces are thermodynamically favorable. The Wenzel model approximation holds up for the rough aggregate surface interface systems. The interfacial adhesive energy and interfacial debonding energy are enhanced geometrically by the roughness factor r, which indicates that the textured aggregate surface is in favor of force-induced interfacial cracking resistance but shows an adverse effect to moisture damage resistance. The findings from the current study provide guidelines for materials design in pavement engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA