Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(49): eadi5545, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055815

RESUMO

Infection response and other immunity-linked genes (ILGs) were first named in Caenorhabditis elegans-based expression after pathogen challenge, but many are also up-regulated when lipid metabolism is perturbed. Why pathogen attack and metabolic changes both increase ILGs is unclear. We find that ILGs are activated when phosphatidylcholine (PC) levels change in membranes of secretory organelles in C. elegans. RNAi targeting of the ADP-ribosylation factor arf-1, which disrupts the Golgi and secretory function, also activates ILGs. Low PC limits ARF-1 function, suggesting a mechanism for ILG activation via lipid metabolism, as part of a membrane stress response acting outside the ER. RNAi of selected ILGs uncovered defects in the secretion of two GFP reporters and the accumulation of a pathogen-responsive complement C1r/C1s, Uegf, Bmp1 (CUB) domain fusion protein. Our data argue that up-regulation of some ILGs is a coordinated response to changes in trafficking and may act to counteract stress on secretory function.


Assuntos
Caenorhabditis elegans , GTP Fosfo-Hidrolases , Animais , GTP Fosfo-Hidrolases/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complexo de Golgi/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Transporte Biológico
2.
Elife ; 122023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36756948

RESUMO

Methylation is a widely occurring modification that requires the methyl donor S-adenosylmethionine (SAM) and acts in regulation of gene expression and other processes. SAM is synthesized from methionine, which is imported or generated through the 1-carbon cycle (1 CC). Alterations in 1 CC function have clear effects on lifespan and stress responses, but the wide distribution of this modification has made identification of specific mechanistic links difficult. Exploiting a dynamic stress-induced transcription model, we find that two SAM synthases in Caenorhabditis elegans, SAMS-1 and SAMS-4, contribute differently to modification of H3K4me3, gene expression and survival. We find that sams-4 enhances H3K4me3 in heat shocked animals lacking sams-1, however, sams-1 cannot compensate for sams-4, which is required to survive heat stress. This suggests that the regulatory functions of SAM depend on its enzymatic source and that provisioning of SAM may be an important regulatory step linking 1 CC function to phenotypes in aging and stress.


Assuntos
Histonas , S-Adenosilmetionina , Animais , S-Adenosilmetionina/metabolismo , Histonas/metabolismo , Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA