RESUMO
In this work, a label-free Ag nanocluster (AgNC)-based fluorescent probe is proposed to detect tumor marker, prostate-specific antigen (PSA). In the experiments, DNA sequences containing segments complemented to different parts of PSA aptamer were used to synthesize DNA-Ag nanoclusters (DNA-AgNC). Some of the obtained specific DNA-AgNC exhibited significant fluorescence increase after hybridization with PSA aptamer. Based on this, a simple DNA-AgNC/aptamer hybridization probe was fabricated for PSA detection using fluorescence quenching, because competitively specific binding between PSA and its aptamer inhibited the fluorescence enhancement effect of PSA aptamer on DNA-AgNC. The sequence of template DNA, pH and salt concentration of binding buffer, and the concentration of aptamer were optimized. Under optimum conditions, the concentration of PSA within the range of 2-150 ng mL-1 with the detection limit of 1.14 ng mL-1 was detected (3σ; n = 7). This approach was also successfully applied to determine PSA in spiked serum samples. As is well known, this was the first report to realize PSA detection using fluorescent AgNC-based probe. This work would provide reference for construction of AgNC-based probes for detecting other proteins.
Assuntos
Aptâmeros de Nucleotídeos/química , Sondas de DNA/química , Fluorescência , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico/métodos , Antígeno Prostático Específico/sangue , Prata/química , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Espectrometria de FluorescênciaRESUMO
This study has reported that a GR-5 DNAzyme based lead ion strip biosensor could exhibit an enhanced specificity with the assistance of graphene oxide (GO). This enhancement results from the specific π-stacking interaction between the ribose rings of the nucleobases and the carbon hexagons in GO which can reduce the false positive interference by removing unhybridized ssDNA during the annealing of GR-5 DNAzyme. Meanwhile, conjugate pad was sprayed with two kinds of AuNP-DNA probes, and nitrocellulose membrane test zone and control zone were immobilized with two kinds of biotin-DNA probes, respectively. The limit of detection of this strip biosensor was estimated to be about 0.05â¯nM (S/Nâ¯=â¯3) and 1â¯nM (with naked eyes) with a linear range from 0.01 to 100⯵M. Furthermore, the strip biosensor exhibited excellent selectivity toward Pb2+ in the presence of other divalent metal ions. For real soil samples, the obtained recoveries were in the range from 91.5% to 113.1%.
Assuntos
Técnicas Biossensoriais , DNA Catalítico/química , Ouro/química , Grafite/química , Chumbo/análise , Nanopartículas Metálicas/química , Sondas de DNA/química , DNA Catalítico/metabolismo , Íons/análise , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
In this paper, DNA containing six cytosines as the formation site for silver nanoclusters (Ag NCs) was adopted as a template for preparing fluorescent DNA-Ag NCs. For the first time, it was found that the fluorescence of DNA-Ag NCs could be quenched after hybridization with their complementary sequence. On the basis of this new phenomenon, we designed a sequence C1 that was completely complementary to human immunodeficiency virus (HIV) DNA, and probe DNA which was partially complementary to C1 for the synthesis of DNA-Ag NCs. The fluorescence of DNA-Ag NCs was quenched after hybridization with C1 and the DNA-Ag NCs/C1 composite was formed, while C1 could be dissociated away from the DNA-Ag NCs by HIV DNA through a strand exchange reaction due to the stronger affinity between HIV DNA and C1, which could switch on the quenched Ag NCs, thus a new "off-on" fluorescence method for HIV DNA detection was developed. In the experiment, the Ag NCs formation site of DNA, the number of base pairs, and the pH and salt concentration of binding buffer were optimized. Under the optimum conditions, the limit of detection for HIV DNA was obtained to be 3.18 nM (3σ/N, n = 7) with the linear range of 15-150 nM for the 150 nM DNA-Ag NCs/C1 probe. Besides, the probe showed excellent specificity to HIV DNA, and even distinguished one nucleotide mismatched HIV DNA.
Assuntos
Sondas de DNA , DNA Viral/análise , Infecções por HIV/diagnóstico , Nanopartículas Metálicas , Prata , Corantes Fluorescentes , HIV/genética , Humanos , Espectrometria de FluorescênciaRESUMO
Graphene quantum dot (GQD) has been attractive in analytical science field due to its low toxicity, stable photoluminescence. Herein, nitrogen-doped GQD (N-GQD) was prepared by a facile solvothermal treatment of GO using dimethylformamide, and exhibited a green emission with 23.1% quantum yield. The N-GQD probe showed a selective and sensitive fluorescence enhancement response to Al3+, the mechanism might be the formation of a complex between Al3+ and N-GQD constrained the photo-induced electron transfer (PET) process of N-GQD itself. With Benesi-Hildebrand equation, the binding constant and molar ratio between N-GQD and Al3+ was calculated to be 4.6 × 104Lmol-1 and 1:1 respectively. The pKa value of N-GQD was also determined to be 4.4 by capillary electrophoresis. In pH 4.0 PBS solution, there was a good linear relation between the fluorescence intensity and the logarithm of concentration of Al3+ in the range of 2.5-75µmolL-1, the limit of detection (3σ) was 1.3µmolL-1. This "Off - On" fluorescence method had been applied to accurate quantification of aluminum in hydrotalcite tablets. What's more, the fluorescence switch property of N-GQD was explored by alternate addition of Al3+ and EDTA. The probe was also utilized for detection Al3+ in living cells due to its excellent biocompatibility.
Assuntos
Alumínio/análise , Grafite/química , Nitrogênio/química , Imagem Óptica/métodos , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Hidróxido de Alumínio/química , Antiácidos/química , Técnicas Biossensoriais/métodos , Cátions/análise , Fluorescência , Células HeLa , Humanos , Limite de Detecção , Hidróxido de Magnésio/química , Pontos Quânticos/ultraestrutura , Comprimidos , Água/análiseRESUMO
In this paper, visual detection of trace lead ion was established by aptamer and silver staining. The basic strategy was that aminated PS2.M aptamer was immobilized onto slide and formed stable G-quadruplex structure. PbS was generated by adding S2-, and it catalyzed subsequent silver staining reaction, through the silver staining amplification effect, the slide presented visible ash black. The gray value of slide after silver staining was analyzed and the semi-quantitative detection of Pb2+ in solution was realized. The results showed that optical darkness ratio (ODR) and logarithmic value of Pb2+ concentration had a good linear relationship (R2â¯=â¯0.951) over the range of 0.5-10⯵M. In addition, there was no obvious interference of other common metal ions for the detection, indicating that this method presented outstanding selectivity. And it was also used for qualitative and semi-quantitative determination of Pb2+ in soil sample successfully.
Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Poluentes Ambientais/análise , Chumbo/análise , Nanopartículas Metálicas/química , Prata/química , Cátions Bivalentes , Colorimetria/métodos , Humanos , Limite de Detecção , Coloração pela Prata/instrumentação , Coloração pela Prata/métodosRESUMO
Safe multifunctional nanoplatforms that have multiple therapeutic functions integrated with imaging capabilities are highly desired for biomedical applications. In this paper, targeted chemo-photothermal synergistic therapy and photoacoustic/computed tomography imaging of tumors were achieved by one novel multifunctional nanoprobe (GMS/DOX@SLB-FA); it was composed of a gold nanostar core and a doxorubicin (DOX)-loaded mesoporous silica shell (GMS), which was coated with a folic acid (FA)-modified thermosensitively supported lipid bilayer (SLB-FA) as a gatekeeper. The multifunctional probe had perfect dispersion and stability; 2.1 nm mesoporous pores and 208 nm hydration particle sizes were obtained. In vitro studies indicated that the drug-loaded probe had excellent ability to control the release of DOX, with 71.98 ± 2.52% cumulative release after laser irradiation, which was significantly higher than that of unirradiated control group. A survival rate of 72.75 ± 4.37% of HeLa cells at 57.75 µg/mL probe also demonstrated the low cytotoxicity of the targeted probe. Both in vitro and in vivo results showed that the probe could achieve targeted photoacoustic imaging of tumors because of the fact that the FA-modified probe could specifically recognize the overexpressed FA receptors on tumor cells; meanwhile, the probe could also achieve the chemo-photothermal synergistic therapy of tumors through controlling the drug release from mesoporous channels by a near-infrared laser. Therefore, the probe had great potential in the early diagnosis and treatment of cancer.
RESUMO
A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 µM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 µM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell.
Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Grafite/química , Lasers , Óxidos/química , Trifosfato de Adenosina/química , Fluoresceínas/química , Células HeLa , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Reprodutibilidade dos Testes , Técnica de Seleção de Aptâmeros/métodos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Quantum dot (QD)-polypeptide probes have been developed through the specific metal-affinity interaction between polypeptides appended with N-terminal polyhistidine sequences and CdSe/ZnS core-shell QDs. The size and charge of a QD-polypeptide can be tuned by using different coiled-coil polypeptides. Compared to glutathione-capped QDs (QD-GSH), QD-polypeptide probes showed an approximately two- to three-fold luminescence increase, and the luminescence increase was not obviously related to the charge of the polypeptide. QD-polypeptide probes with different charge have a great effect on nonspecific cellular uptake. QD-polypeptide probes with negative charge exhibited lower nonspecific cellular uptake in comparison to the QD-GSH, while positively charged QD-polypeptide probes presented higher cellular uptake than the QD-GSH. A targeted QD-ARGD probe can obviously increase targeted cellular uptake in α v ß 3 overexpressing HeLa cells compared to QD-A. In addition, QD-polypeptide probes showed lower in vitro cytotoxicity compared to the original QDs. These results demonstrate that these QD-polypeptide probes with high specific cellular uptake, high fluorescence intensity and low background noise are expected to have great potential applications in targeted cell imaging.
Assuntos
Técnicas Citológicas/métodos , Imagem Óptica/métodos , Peptídeos/química , Pontos Quânticos/química , Células HeLa , Humanos , Células MCF-7RESUMO
Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.
Assuntos
Meios de Contraste , Terapia com Luz de Baixa Intensidade/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Nanosferas/uso terapêutico , Neoplasias/patologia , Técnicas Fotoacústicas/instrumentação , Ouro/química , Células HeLa , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Células MCF-7 , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/ultraestrutura , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanocompostos/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Neoplasias/terapia , Tamanho da Partícula , Técnicas Fotoacústicas/métodosRESUMO
A new strategy is proposed for determination of carcino-embryonic antigen (CEA) based on aptamer/graphene oxide (Apt/GO) by capillary electrophoresis-chemiluminescence (CE-CL) detection system. CEA aptamer conjugated with horseradish peroxidase (HRP) firstly mixes with GO, and the CL will be quenched because the stack of HRP-Apt on GO leads to chemiluminescence resonance energy transfer (CRET). When CEA exists, the specific combination of HRP-Apt and CEA can form HRP-Apt-CEA complex, which dissociates from GO. Then, the CL catalyzed by HRP-Apt-CEA complex can be detected without any CRET, and the content of CEA can be estimated by the CL intensity. It has been proved that the interference issue resulted from free HRP-Apt is solved well by mixing GO firstly with HRP-Apt, which blocks the free HRP-Apt's CL signal due to CL quenching effect of GO; and the interference resulted from GO to CL is also solved by CE, then the sensitivity and accuracy can be greatly improved. Results also showed that the CL intensity had a linear relationship with the concentration of CEA in the range from 0.0654 to 6.54 ng/mL, and the limit of detection was approximately 4.8 pg/mL (S/N = 3). This proposed method with high specificity offers a new way for separation and determination of biomolecule, and has good potential in application of biochemistry and bioanalysis.
Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Eletroforese Capilar/instrumentação , Grafite/química , Medições Luminescentes/instrumentação , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/genética , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Óxidos/química , Sensibilidade e EspecificidadeRESUMO
Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανß3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανß3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.