Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 245: 117913, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145737

RESUMO

The current work investigates bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbons utilizing the biomass-electrokinetic (BIO-EK) approaches. The use of natural surfactants derived from plant biomass may improve remediation capacity by enhancing the solubility of organic pollutants. Sapindus mukorossi, a natural surfactant producer, was extracted from plant biomass in this study. The crude oil biodegradation efficiency was reported to be 98 %. In nature, FTIR confirms that plant biomass is lipopeptide. GCMS revealed that the crude oil (C7 - C23) was efficiently bio-degraded from lower to higher molecular weight. The application of natural surfactants in electokinetic remediation increased the plant biomass degradation of crude oil polluted soil by 98% compared to electrokinetic 55% in 2 days. Natural surfactant improves hydrocarbon solubilization and accelerates hydrocarbon electro migration to the anodic compartment, as confirmed by the presence of greater total organic content than the electrokinetic. This study proves that BIO-EK compared with a natural surfactant derived from plant biomass may be utilized to improve in situ bioremediation of crude oil polluted soils.


Assuntos
Petróleo , Poluentes do Solo , Tensoativos , Petróleo/metabolismo , Solo , Biomassa , Biodegradação Ambiental , Hidrocarbonetos , Poluentes do Solo/análise , Microbiologia do Solo
2.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005365

RESUMO

We utilized a first-principle density functional theory for a comprehensive analysis of CsPbX3 (X = F, Cl, Br, I) to explore its physical and chemical properties, including its mechanical behavior, electronic structure and optical properties. Calculations show that all four materials have good stability, modulus of elasticity, hardness and wear resistance. Additionally, CsPbX3 demonstrates a vertical electron leap and serves as a semiconductor material with direct band gaps of 3.600 eV, 3.111 eV, 2.538 eV and 2.085 eV. In examining its optical properties, we observed that the real and imaginary components of the dielectric function exhibit peaks within the low-energy range. Furthermore, the dielectric function gradually decreases as the photon energy increases. The absorption spectrum reveals that the CsPbX3 material exhibits the highest UV light absorption, and as X changes (with the increase in atomic radius within the halogen group of elements), the light absorption undergoes a red shift, becoming stronger and enhancing light utilization. These properties underscore the material's potential for application in microelectronic and optoelectronic device production. Moreover, they provide a theoretical reference for future investigations into CsPbX3 materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA