Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815871

RESUMO

Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRß (p-PDGFRß) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRß/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.


Assuntos
Becaplermina , Subunidade alfa 1 de Fator de Ligação ao Core , Calcificação Vascular , Animais , Masculino , Camundongos , Becaplermina/metabolismo , Becaplermina/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Calcificação Vascular/metabolismo
2.
Calcif Tissue Int ; 113(1): 68-82, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37256358

RESUMO

Senescence is a complex cell state characterized by stable cell cycle arrest and a unique secretory pattern known as the senescence-associated secretory phenotype (SASP). The SASP factors, which are heterogeneous and tissue specific, normally include chemokines, cytokines, growth factors, adhesion molecules, and lipid components that can lead to multiple age-associated disorders by eliciting local and systemic consequences. The skeleton is a highly dynamic organ that changes constantly in shape and composition. Senescent cells in bone and bone marrow produce diverse SASP factors that induce alterations of the skeleton through paracrine effects. Herein, we refer to bone cell-associated SASP as "bone-SASP." In this review, we describe current knowledge of cellular senescence and SASP, focusing on the role of senescent cells in mediating bone pathologies during natural aging and premature aging syndromes. We also summarize the role of cellular senescence and the bone-SASP in glucocorticoids-induced bone damage. In addition, we discuss the role of bone-SASP in the development of osteoarthritis, highlighting the mechanisms by which bone-SASP drives subchondral bone changes in metabolic syndrome-associated osteoarthritis.


Assuntos
Osso e Ossos , Senescência Celular , Osso e Ossos/metabolismo , Osteócitos/metabolismo , Citocinas/metabolismo , Fenótipo
3.
Cell Metab ; 35(4): 667-684.e6, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019080

RESUMO

The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.


Assuntos
Medula Óssea , PPAR gama , Camundongos , Animais , PPAR gama/metabolismo , Medula Óssea/metabolismo , Oxilipinas/metabolismo , Glucocorticoides/metabolismo , Adipócitos/metabolismo , Senescência Celular , Células da Medula Óssea
4.
Adv Sci (Weinh) ; 10(20): e2206938, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102631

RESUMO

Evidence suggests a unique association between bone aging and neurodegenerative/cerebrovascular disorders. However, the mechanisms underlying bone-brain interplay remain elusive. Here platelet-derived growth factor-BB (PDGF-BB) produced by preosteoclasts in bone is reported to promote age-associated hippocampal vascular impairment. Aberrantly elevated circulating PDGF-BB in aged mice and high-fat diet (HFD)-challenged mice correlates with capillary reduction, pericyte loss, and increased blood-brain barrier (BBB) permeability in their hippocampus. Preosteoclast-specific Pdgfb transgenic mice with markedly high plasma PDGF-BB concentration faithfully recapitulate the age-associated hippocampal BBB impairment and cognitive decline. Conversely, preosteoclast-specific Pdgfb knockout mice have attenuated hippocampal BBB impairment in aged mice or HFD-challenged mice. Persistent exposure of brain pericytes to high concentrations of PDGF-BB upregulates matrix metalloproteinase 14 (MMP14), which promotes ectodomain shedding of PDGF receptor ß (PDGFRß) from pericyte surface. MMP inhibitor treatment alleviates hippocampal pericyte loss and capillary reduction in the conditional Pdgfb transgenic mice and antagonizes BBB leakage in aged mice. The findings establish the role of bone-derived PDGF-BB in mediating hippocampal BBB disruption and identify the ligand-induced PDGFRß shedding as a feedback mechanism for age-associated PDGFRß downregulation and the consequent pericyte loss.


Assuntos
Hipocampo , Pericitos , Animais , Camundongos , Becaplermina , Camundongos Knockout , Camundongos Transgênicos , Pericitos/fisiologia , Proteínas Proto-Oncogênicas c-sis , Receptor beta de Fator de Crescimento Derivado de Plaquetas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA