Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rheumatol Int ; 44(10): 1887-1896, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39136786

RESUMO

Magnetic resonance imaging (MRI) is increasingly used in the classification and evaluation of osteoarthritis (OA). Many studies have focused on knee OA, investigating the association between MRI-detected knee structural abnormalities and knee pain. Hip OA differs from knee OA in many aspects, but little is known about the role of hip structural abnormalities in hip pain. This study aimed to systematically evaluate the association of hip abnormalities on MRI, such as cartilage defects, bone marrow lesions (BMLs), osteophytes, paralabral cysts, effusion-synovitis, and subchondral cysts, with hip pain. We searched electronic databases from inception to February 2024, to identify publications that reported data on the association between MRI features in the hip joint and hip pain. The quality of the included studies was scored using the Newcastle-Ottawa Scale (NOS). The levels of evidence were evaluated according to the Cochrane Back Review Group Method Guidelines and classified into five levels: strong, moderate, limited, conflicting, and no evidence. A total of nine studies were included, comprising five cohort studies, three cross-sectional studies, and one case-control study. Moderate level of evidence suggested a positive association of the presence and change of BMLs with the severity and progress of hip pain, and evidence for the associations between other MRI features and hip pain were limited or even conflicting. Only a few studies with small to modest sample sizes evaluated the association between hip structural changes on MRI and hip pain. BMLs may contribute to the severity and progression of hip pain. Further studies are warranted to uncover the role of hip MRI abnormalities in hip pain. The protocol for the systematic review was registered with PROSPERO ( https://www.crd.york.ac.uk/PROSPERO/ , CRD42023401233).


Assuntos
Artralgia , Articulação do Quadril , Imageamento por Ressonância Magnética , Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/complicações , Artralgia/diagnóstico por imagem , Artralgia/etiologia , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Osteófito/diagnóstico por imagem , Cistos Ósseos/diagnóstico por imagem , Cistos Ósseos/complicações
2.
Clin Rheumatol ; 43(8): 2417-2433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961031

RESUMO

The burden of osteoarthritis (OA) is rapidly increasing with population aging, but there are still no approved disease-modifying drugs available. Accumulating evidence has shown that OA is a heterogeneous disease with multiple phenotypes, and it is unlikely to respond to one-size-fits-all treatments. Inflammation is recognized as an important phenotype of OA and is associated with worse pain and joint deterioration. Therefore, it is believed that anti-inflammatory treatments may be more effective for OA with an inflammatory phenotype. In this review, we summarized clinical trials that evaluated anti-inflammatory treatments for OA and discussed whether these treatments are more effective in inflammatory OA phenotypes compared to general OA patients.


Assuntos
Anti-Inflamatórios , Ensaios Clínicos como Assunto , Inflamação , Osteoartrite , Humanos , Osteoartrite/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
3.
Plant Dis ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607332

RESUMO

Prunus sibirica L. (Siberian apricot) is a member of the Rosaceae family and an ecologically important tree species in China (Buer et al., 2022). Shot hole symptoms on the leaves were observed in five Siberian apricot groves in Chengdu (103.81 E, 30.97 N), Sichuan province in July 2020. The symptoms first appeared as small purplish-brown spots with yellow rings around them. As the disease progressed, the damaged area (diameter 1.5-3.0 cm) became necrotic and fell off. The disease incidence was about 60% and the disease index was 28.6 of leaves in the grove. in most severe cases. Fifteen symptomatic leaves were collected from 5 different trees in an orchard. Pathogen isolation was performed from symptomatic leaf tissue (5 × 5 mm) though surface disinfection (in 70% ethanol and 2% NaClO) and incubation on Potato Dextrose Agar (PDA) at 28℃ for 3 days. Overall 10 isolates with similar colony morphology were obtained from the 15 infected tissue pieces, and three representative isolates (XCK 2-4) were selected for further study. Colonies of the isolates on PDA were initially cottony, pale white to grayish-green with abundant aerial hyphae and produced conidial masses after 7 days. Conidiogenous cells were clavate and aggregated in acervuli. Conidia were smooth-walled, single-celled, straight, and slightly obtusely rounded at both ends, 12.8 to 18.7 × 4.3 to 5.7 µm in size (Fig. 1). The morphological characteristics of the three isolates were consistent with the description of species in the Colletotrichum gloeosporioides complex. DNA was amplified using the following primers pairs for the internal transcribed spacer (ITS) region of rDNA and partial sequences of beta-tubulin (TUB2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS-1), and translation elongation factor (TEF-1), respectively: ITS1/ITS4, T1/Bt2b, GDF/GDR, CHS-F/CHS-R, and EF-F/EF-R (Vieira et al., 2014). Accession numbers (MW228049, MW284974, MW284976, MW284975 and MW284977, respectively) were obtained afterepositing all the resulting sequences in GenBank. Nucleotide blast showed 99 to 100% identities with Colletotrichum fructicola (GenBank accessions nos. MZ961683, MW284974, MN525881, MN525860, MF627961). Phylogenetic analysis of combined ITS-TUB-GAPDH genes using the Mrbayes inference method showed that the three isolates clustered with three reference isolates of C. fructicola as a distinct clade (Fig. 2). To verify Koch's postulates, ten 3-year-old healthy potted plants of P. sibirica were inoculated by spraying a conidial suspension (6 × 105 conidia/mL) of isolate XCK2 on both sides of leaves, and the control leaves were sprayed with sterile water. Then, all treatments were placed in a moist environment (25±2°C, 80% relative humidity, natural light). The inoculated plants showed typical symptoms of plants with natural infections, while the controls remained asymptomatic after 14 days. The pathogen C. fructicola was re-isolated from all inoculated plants, and the culture and fungus characteristics were the same as those of the original isolate. Colletotrichum fructicola was not isolated from the control plants. The results indicated that C. fructicola is the causal agent of the disease. Colletotrichum fructicola was reported as a leaf pathogen on Camellia chrysantha in China (Zhao et al., 2021). This is the first report of C. fructicola causing P. sibirica leaf shot-hole in the world. The identification of C. fructicola could provide relevant information for applying management strategies and research on the Siberian apricot disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA