Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 14(1): 184, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094765

RESUMO

Organic electrochemical transistors (OECTs) have emerged as versatile platforms for broad applications spanning from flexible and wearable integrated circuits to biomedical monitoring to neuromorphic computing. A variety of materials and tailored micro/nanostructures have recently been developed to realized stretchable OECTs, however, a solid-state OECT with high elasticity has not been demonstrated to date. Herein, we present a general platform developed for the facile generation of highly elastic all-polymer OECTs with high transconductance (up to 12.7 mS), long-term mechanical and environmental durability, and sustainability. Rapid prototyping of these devices was achieved simply by transfer printing lithium bis(trifluoromethane)sulfonimide doped poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS/LiTFSI) microstructures onto a resilient gelatin-based gel electrolyte, in which both depletion-mode and enhancement-mode OECTs were produced using various active channels. Remarkably, the elaborate 3D architectures of the PEDOT:PSS were engineered, and an imprinted 3D-microstructured channel/electrolyte interface combined with wrinkled electrodes provided performance that was retained (> 70%) through biaxial stretching of 100% strain and after 1000 repeated cycles of 80% strain. Furthermore, the anti-drying and degradable gelatin and the self-crosslinked PEDOT:PSS/LiTFSI jointly enabled stability during > 4 months of storage and on-demand disposal and recycling. This work thus represents a straightforward approach towards high-performance stretchable organic electronics for wearable/implantable/neuromorphic/sustainable applications.

2.
ACS Appl Mater Interfaces ; 14(10): 12583-12595, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230799

RESUMO

Hydrogel electrolytes as soft ionic conductors have been extensively exploited to establish skinlike and biocompatible devices. However, in many common hydrogels, there exists irreversible elongation upon prolonged stretching cycles and poor interfacial contact, which have significantly hindered their practical applications where long-term operation at large deformations is needed. Herein, multifunctional soft electronic devices with reversible stretchability and improved electrode/electrolyte interfaces are demonstrated by employing polyacrylamide-based double-network organohydrogel electrolytes soaked with a high content of tannic acid (TA) that affords multiple noncovalent interactions and redox activity. Performances of the TA-rich gels are evaluated for the first time in realizing shape-recoverable stretchable devices against repeated deformations to 500% strain, with superior gel-electrode interfaces exhibiting both intimate adhesion and boosted electrochemical capacitance of >200 mF·cm-2. A maximal 4-fold higher capacitance can be achieved by introducing TA and ethylene glycol (EG) into hydrogels. Moreover, a soft electronic system consisting of stretchable supercapacitors and gel-based microsensors was demonstrated, in which the electronic performance of these devices can be well preserved after >1000 repeated cycles at strains of up to 200%, without obvious residual strain or electrode delamination. This could pave a route to the design of multifunctional gel networks tackling both the mechanical and interfacial issues in soft and biocompatible devices.

3.
ACS Appl Mater Interfaces ; 12(50): 56393-56402, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274913

RESUMO

Electronic materials and devices that can mimic biological systems featured with elasticity, toughness, self-healing, degradability, and environmental friendliness drive the technological developments in fields spanning from bioelectronics, biomedical diagnosis and therapy, electronic skin, and soft robotics to Internet-of-Things with "green" electronics. Among them, ionic devices based on gel electrolytes have emerged as attractive candidates for biomimetic systems. Herein, we presented a straightforward approach to demonstrate soft ionic microdevices based on a versatile organohydrogel platform acting as both a free-standing, stretchable, adhesive, healable, and entirely degradable support and a highly conductive, dehydration- and freezing-tolerant electrolyte. This is achieved by forming a gelatin/ferric-ion-cross-linked polyacrylic acid (GEL/PAA) dual dynamic supramolecular network followed by soaking into a NaCl glycerol/water solution to further toughen the gelatin network via solvent displacement, thus obtaining a high toughness of 1.34 MJ·cm-3 and a high ionic conductivity (>7 mS·cm-1). Highly stretchable and multifunctional ionic microdevices are then fabricated based on the organohydrogel electrolytes by simple transfer printing of carbon-based microelectrodes onto the prestretched gel surface. Proof-of-concept microdevices including resistive strain sensors and microsupercapacitors are demonstrated, which displayed outstanding stretchability to 300% strain, resistance to dehydration for >6 months, autonomous self-healing, and rapid room-temperature degradation within hours. The present material design and fabrication approach for the organohydrogel-based ionic microdevices will provide promising scope for life-like and sustainable electronic systems.


Assuntos
Eletrólitos/química , Eletrônica , Hidrogéis/química , Resinas Acrílicas/química , Elasticidade , Condutividade Elétrica , Gelatina/química , Glicerol/química , Íons/química
4.
Soft Matter ; 16(38): 8736-8759, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32969442

RESUMO

Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.

5.
ACS Appl Mater Interfaces ; 11(24): 21895-21903, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31124644

RESUMO

Double-network tough hydrogels have raised increasing interest in stretchable electronic applications as well as electronic skin (e-skin) owing to their excellent mechanical properties and functionalities. While hydrogels have been extensively explored as solid-state electrolytes, stretchable energy storage devices based on tough hydrogel electrolytes are still limited despite their high stretchability and strength. A key challenge remains in the robust electrode/electrolyte interface under large mechanical strains. Inspired by the skin structure that involves the microstructured interface for the tight connection between the dermis and epidermis, we demonstrated that a surface-microstructured tough hydrogel electrolyte composed of agar/polyacrylamide/LiCl (AG/PAAm/LiCl) could be exploited to allow stretchable supercapacitors with enhanced mechanical and electrochemical performance. The prestretched tough hydrogel electrolyte was treated to generate surface microstructures with a roughness of tens of micrometers simply via mechanical rubbing followed by the attachment of activated carbon electrodes on both sides to realize the fabrication of the stretchable supercapacitor. Through investigating the properties of the tough hydrogel electrolyte and the electrochemical performance of the as-fabricated supercapacitors under varied strains, the surface-microstructured hydrogel electrolyte was shown to enable robust adhesion to electrodes, improving electrochemical behavior and capacitance, as well as having better performance retention under repeated stretching cycles, which surpassed the pristine hydrogel with smooth surfaces. Our approach could provide an alternative and general strategy to improve the interfacial properties between the electrode and the hydrogel electrolyte, driving new directions for functional stretchable devices based on tough hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA