Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Nat Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724866

RESUMO

In this study, 14 abietene and pimarene diterpenoids were isolated from the woods of Agathis dammara. Among them, 4 new compounds, dammarone A-C and dammaric acid A (1-4), were firstly reported, respectively. The structure of the new compounds was determined by HR ESI-MS and 1D/2D NMR spectroscopy, and their absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. The hypoglycemic effect of all compounds was evaluated by transgenic zebrafish model, and the structure-activity relationship was discussed. Hinokione (7, HO) has low toxicity and significant hypoglycemic effects on zebrafish, the mechanism is mainly by promoting the differentiation of zebrafish pancreatic endocrine precursor cells (PEP cells) into ß cells, thereby promoting the regeneration of pancreatic ß cells.

2.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498393

RESUMO

Numerous studies have demonstrated a robust correlation between metabolic syndrome (MetS) and colorectal cancer (CRC). Nonetheless, no systematic analysis or visualization of relevant publications has been conducted via bibliometrics. This research, centred on 616 publications obtainable through the Web of Science Core Collection (WoSCC), employed CiteSpace software and VOSviewer software for correlation analyses of authors, journals, institutions, countries, keywords, and citations. The findings indicate that the Public Library of Science had the highest number of publications, while the United States, China and South Korea were the most contributory nations. Recent years have seen the mechanisms linking Metabolic Syndrome with Colorectal Cancer, including diet, obesity, insulin resistance and intestinal flora, remain a burgeoning research area. Furthermore, bariatric surgery appears to be a promising new area of study. This paper presents the initial bibliometric and visualization analysis of research literature concerning CRC and MetS which examines research trends and hotspots.

3.
Nat Prod Bioprospect ; 14(1): 23, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517590

RESUMO

In this study, two new kaurane diterpenes (16, 17), together with 12 lignans (1-12), a triterpene (15), and two other compounds (13, 14) were isolated from the woods of Agathis dammara. The structure of the new compound was determined by HR ESIMS and 1D/2D NMR spectroscopy, and its absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. Compounds 5, 11, 14 exhibit significant hypoglycaemic activity in zebrafish, and their mechanism of action is to enhance glucose uptake in zebrafish.

4.
J Med Chem ; 66(23): 15847-15866, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983615

RESUMO

The orphan nuclear receptor Nur77 has been validated as a potential drug target for treating breast cancer. Therefore, focusing on the SAR study of the lead 8b (KDSPR(Nur77) = 354 nM), we found the active compound ja which exhibited improved Nur77-binding capability (KDSPR(Nur77) = 91 nM) and excellent antiproliferative activities against breast cancer cell lines. Interestingly, ja acted as a potent and selective Nur77 antagonist, displaying good potency against triple-negative breast cancer (TNBC) cell lines but did not inhibit human normal breast cancer cell line MCF-10A (SI > 20). Exceptionally, ja Nur77-dependently caused mitochondria dysfunction and induced the caspase-dependent apoptosis by mediating the TP53 phosphorylation pathway. Moreover, ja significantly suppressed MDA-MB-231 xenograft tumor growth but had no apparent side effects in mice and zebrafish. Overall, ja demonstrated to be the first Nur77 modulator mediating the TP53 phosphorylation pathway that has the potential as a novel anticancer agent for TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Peixe-Zebra , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose , Indóis/química , Proliferação de Células
5.
Br J Cancer ; 129(12): 1915-1929, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884683

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin­dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS: The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS: CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS: This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Eur J Med Chem ; 261: 115858, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837671

RESUMO

Cyclin-dependent kinase 9 (CDK9) is directly related to tumor development in triple-negative breast cancer (TNBC) patients. Increased CDK9 is significantly associated with poor patient prognosis, while inhibiting CDK9-Cyclin T1 protein-protein interaction has recently been demonstrated as a new approach to TNBC treatment. Herein, we synthesized a novel class of 4,4'-bipyridine derivatives as potential CDK9-Cyclin T1 PPI inhibitors against TNBC. The represented compound B19 was found to be an excellent and selective CDK9-Cyclin T1 PPI inhibitor with good potency against TNBC cell lines while exhibiting lower toxicity in normal human cell lines than the positive compound I-CDK9. Notably, compound B19 showed good pharmacokinetic properties and excellent antitumor activity against TNBC (4T1) allografts in mice with a therapeutic index of more than 42 (TGI4T1(12.5 mg/kg,i.p.) = 63.1% vs. LD50 = 537 mg/kg). Moreover, the administration of B19 in combination with the PARP inhibitor Olaparib results in a significant increase of the antitumor activity in MDA-MB-231 cells relative to that of either single agent. To our knowledge, B19 is the first reported non-metal organic compound that acts as a selective CDK9-Cyclin T1 PPI inhibitor with in vivo antitumor activity, and it may be alone and in combination with PARP inhibitor Olaparib for TNBC therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Ciclina T , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo
7.
Eur J Pharmacol ; 960: 176114, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37863412

RESUMO

In patients with non-small cell lung cancer (NSCLC), the standard therapy consists of selective tyrosine kinase inhibitors that target epidermal growth factor receptors (EGFR). Nonetheless, their clinical utility is primarily limited by the development of resistance to drugs. HDAC inhibitors have been shown in studies to reduce the level of EGFR that is expressed and downregulate the EGFR-induced phosphorylation of AKT and ERK. Therefore, dual inhibitors of EGFR and HDAC provide a potential approach as combination treatment synergistically inhibited the growth of NSCLC. Herein, we examined the EGFR inhibition effect of twenty compounds which designed and synthesized by us previously. Among them, compounds 12c and 12d exhibited powerful antiproliferative activity against the NCI-H1975 cell line with IC50 values of 0.48 ± 0.07 and 0.35 ± 0.02 µM, correspondingly. In cell-free kinase assays, both 12c and 12d demonstrated target-specific EGFR inhibition against wild type (EGFRwt). Furthermore, the expression of EGFR and phosphorylation of the EGF-induced pathways were significantly suppressed under the treatment of 12c and 12d. Besides, both histones H3 and H4 exhibited increased levels of acetylation following 12c and 12d treatment. The animal experiments shown that 12d could prevent the growth of tumor, inhibited the expression of EGFR and the phosphorylation levels of p70 S6K, AKT and p38 MAPK in vivo, and did not cause organ damage to the mice during the experiment. Overall, the results illustrated that compound 12c and 12d could serve as effective EGFR and HDAC dual inhibitors in NSCLC cells. Our work offers an alternative strategy for NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Receptores ErbB/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
8.
Bioorg Chem ; 141: 106887, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801784

RESUMO

Docosahexaenoic acid (DHA) has a strong anti-inflammatory effect and is reported to bind to the ligand-binding domain (LBD) of the anti-inflammatory modulator Nur77. Recently, we have found that DHA ethanolamine (DHA-EA) exerts anti-inflammatory activity as a Nur77 modulator. Herein, using a fragment splicing-based drug design strategy, nineteen new DHA-EA derivatives were synthesized starting from DHA algae oil and then evaluated for their anti-inflammatory activity. The cell-based cytotoxicity assays showed that compounds J2, J9, and J18 had no noticeable effect on the cell morphology and viability of RAW 264.7, LO2, and MCR-5 cells. Meanwhile, J9 was identified as the most potent anti-inflammatory molecule in LPS-stimulated RAW 264.7 cells. Also, the molecular docking study and SPR assay demonstrated that J9 exhibited in vitro Nur77-binding affinity (KD = 8.58 × 10-6 M). Moreover, the mechanism studies revealed that the anti-inflammatory activity of J9 was associated with its inhibition of NF-κB activation in a Nur77-dependent manner. Notably, J9 could attenuate LPS-induced inflammation in the mouse acute lung injury (ALI) model. Overall, the DHA-EA derivative J9 targeting Nur77 is a potential candidate for developing anti-inflammatory and ALI-treating agents.


Assuntos
Ácidos Docosa-Hexaenoicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Camundongos , Anti-Inflamatórios/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Etanolaminas/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores
9.
Bioorg Chem ; 140: 106795, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657195

RESUMO

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Assuntos
Anticonvulsivantes , Cirrose Hepática , Animais , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Antifibróticos , Autofagia , Células Estreladas do Fígado
10.
Front Pharmacol ; 14: 1200110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405051

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide with inflammation and injury in airway epithelial cells. However, few treatment options effectively reduce severity. We previously found that Nur77 is involved in lipopolysaccharide-induced inflammation and injury of lung tissue. Here, we established an in vitro model of COPD-related inflammation and injury in 16-HBE cells induced by cigarette smoke extract (CSE). In these cells, Nur77 expression and localization to the endoplasmic reticulum (ER) increased following CSE treatment, as did ER stress marker (BIP, ATF4, CHOP) expression, inflammatory cytokine expression, and apoptosis. The flavonoid derivative, named B6, which was shown to be a modulator of Nur77 in previous screen, molecular dynamics simulation revealed that B6 binds strongly to Nur77 through hydrogen bonding and hydrophobic interactions. Treating CSE-stimulated 16-HBE cells with B6 resulted in a reduction of both inflammatory cytokine expression and secretion, as well as attenuated apoptosis. Furthermore, B6 treatment resulted in a decrease in Nur77 expression and translocation to the ER, which was accompanied by a concentration-dependent reduction in the expression of ER stress markers. Meanwhile, B6 played a similar role in CSE-treated BEAS-2B cells. These combined effects suggest that B6 could inhibit inflammation and apoptosis in airway epithelial cells after cigarette smoke stimulation, and support its further development as a candidate intervention for treating COPD-related airway inflammation.

11.
Int J Biol Macromol ; 244: 125182, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37276898

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2, has become a global public health crisis. The entry of SARS-CoV-2 into host cells is facilitated by the binding of its spike protein (S1-RBD) to the host receptor hACE2. Small molecule compounds targeting S1-RBD-hACE2 interaction could provide an alternative therapeutic strategy sensitive to viral mutations. In this study, we identified G7a as a hit compound that targets the S1-RBD-hACE2 interaction, using high-throughput screening in the SARS2-S pseudovirus model. To enhance the antiviral activity of G7a, we designed and synthesized a series of novel 7-azaindole derivatives that bind to the S1-RBD-hACE2 interface. Surprisingly, ASM-7 showed excellent antiviral activity and low cytotoxicity, as confirmed by pseudovirus and native virus assays. Molecular docking and molecular dynamics simulations revealed that ASM-7 could stably bind to the binding interface of S1-RBD-hACE2, forming strong non-covalent interactions with key residues. Furthermore, the binding of ASM-7 caused alterations in the structural dynamics of both S1-RBD and hACE2, resulting in a decrease in their binding affinity and ultimately impeding the viral invasion of host cells. Our findings demonstrate that ASM-7 is a promising lead compound for developing novel therapeutics against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/química , Pandemias , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Antivirais/química , Ligação Proteica
12.
J Enzyme Inhib Med Chem ; 38(1): 2227777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357764

RESUMO

Nur77 modulators have emerged as a promising therapeutic approach for hepatocellular carcinoma. In this study, a structure-based rational drug design approach was used to design and synthesise a series of 4-((8-hydroxy-2-methylquinolin-4-yl)amino)benzoylhydrazone derivatives based on the binding characteristics of our previously reported 10g and the native ligand 3NB at the binding Site C of Nur77. Cell-based cytotoxicity assays revealed that compound TMHA37 demonstrated the highest cytotoxicity against all tested cancer cells. The induced fit docking and binding pose metadynamics simulation suggested that TMHA37 was the most promising Nur77 binder at Site C. Molecular dynamics simulation validated the stable binding of TMHA37 to Nur77's Site C but not to Sites A or B. Specifically, TMHA37 bound strongly to Nur77-LBD (KD = 445.3 nM) and could activate Nur77's transcriptional activity. Furthermore, TMHA37 exhibited antitumor effects by blocking the cell cycle at G2/M phase and inducing cell apoptosis in a Nur77-dependent manner.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Sítios de Ligação , Divisão Celular , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral
13.
Front Pharmacol ; 14: 1146276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063272

RESUMO

Background: The nuclear receptor Nur77 has been demonstrated to play a vital role in the inflammatory response and cellular metabolisms, and its ligands exhibit efficacy in the treatment of inflammation-related diseases (e.g., improving mouse acute lung injury (ALI) and obesity. Recently, ω-3 polyunsaturated fatty acid-ethanolamine derivatives (ω-3 PUFA-EAs), including DPA-EA and DHA-EA, have been reported as new Nur77-targeting anti-inflammatory agents. However, the lipid-lowering effect of ω-3 PUFA-EAs is still unknown, and lipid profile changes induced by Nur77-targeting anti-inflammatory agents also remain unclear. Objective: This study aimed to evaluate the lipid-lowering effect and the underlying mechanism of DPA-EA acting as Nur77-targeting anti-inflammatory agents. It also aimed to investigate the in vitro and in vivo lipid-lowering effects of the DPA-EA and DHA-EA mixture prepared from algae oil. Methods: The in vitro lipid-lowing effect of DPA-EA and its mixture with DHA-EA was first evaluated in palmitic acid-stimulated HepG2 Cells. To confirm the lipid-lowering effect and explore the underlying mechanism, we performed untargeted lipidomic analysis using ultra-performance liquid chromatography/triple quadrupole-time-of-flight (TOF) mass spectrometry coupled with multivariate statistical analysis, with another Nur77-targeting anti-inflammatory compound Celastrol (Cel) as a reference. Finally, we examined the anti-obesity effect of the DPA-EA and DHA-EA mixture synthesized from algae oil in a high-fat diet (HFD)-fed mice model. Results: DPA-EA significantly alleviated lipid accumulation with lower toxicity than Celastrol. Nur77-targeting compounds DPA-EA and Celastrol could simultaneously reduce 14 lipids (9 TGs, 2 PCs, 1 PA, 1 SM, and 1 LacCer) and increase 13 lipids (4 DGs, 6 LPEs, 2 PEs, and 1PC) in Pal-stimulated HepG2 cells. However, Cer lipids were more sensitive to DPA-EA, while the over-downregulation of SM lipids might be associated with the off-target toxicity of Celastrol. The mixture of DPA-EA and DHA-EA synthesized from algae oil could significantly decrease TG, TC, and LDL levels and increase HDL levels in HFD-fed mice, exerting an excellent anti-obesity effect. Conclusion: Nur77-targeting anti-inflammatory compound DAP-EA could promote the hydrolysis of PEs and TGs to ameliorate lipid accumulation. The DPA-EA and DHA-EA mixture prepared from algae oil might be a potential therapeutic agent for obesity and other inflammation-related diseases.

14.
Eur J Med Chem ; 254: 115341, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058970

RESUMO

Retinoid X receptor alpha (RXRα) is an important therapeutic target of cancer. Recently, small molecules (e.g.,XS-060 and its derivatives), which can significantly induce RXRα-dependent mitotic arrest by inhibiting pRXRα-PLK1 interaction, have been demonstrated as excellent anticancer agents. To further obtain novel RXR-targeted antimitotic agents with excellent bioactivity and drug-like properties, we herein synthesized two new series of bipyridine amide derivatives with XS-060 as the lead compound. In the reporter gene assay, most synthesized compounds showed antagonistic activity against RXRα. The most active compound, bipyridine amide B9 (BPA-B9), showed better activity than XS-060, with excellent RXRα-binding affinity (KD = 39.29 ± 1.12 nM) and anti-proliferative activity against MDA-MB-231 (IC50 = 16 nM, SI > 3). Besides, a docking study revealed a proper fitting of BPA-B9 into the coactivator binding site of RXRα, rationalizing its potent antagonistic effect on RXRα transactivation. Further, the mechanism studies revealed that the anticancer activity of BPA-B9 was dependent on its cellular RXRα-targeted mechanism, such as inhibiting pRXRα-PLK1 interaction and inducing RXRα-dependent mitotic arrest. Besides, BPA-B9 displayed better pharmacokinetics than the lead XS-060. Further, animal assays indicated BPA-B9 had significant anticancer efficacy in vivo with no considerable side effects. Together, our study reveals a novel RXRα ligand BPA-B9 targeting the pRXRα-PLK1 interaction, with great potential as a promising anticancer drug candidate for further development.


Assuntos
Amidas , Antineoplásicos , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo
15.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770611

RESUMO

Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases , Humanos , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Trifosfato de Adenosina/metabolismo
16.
Comput Biol Med ; 155: 106645, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774892

RESUMO

Cyclin-dependent kinases 1 (CDK1) has been identified as a potential target for the search for new antitumor drugs. However, no clinically effective CDK1 inhibitors are now available for cancer treatment. Therefore, this study aimed to offer potential CDK1 inhibitors using de novo drug generation, molecular docking, and molecular dynamics (MD) simulation studies. We first utilized the BREED algorithm (a de novo drug generation approach) to produce a novel library of small molecules targeting CDK1. To initially obtain novel potential CDK1 inhibitors with favorable physicochemical properties and excellent druggability, we performed a virtual rule-based rational drug screening on our generated library and found ten initial hits. Then, the molecular interactions and dynamic stability of these ten initial hits and CDK1 complexes during their all-atom MD simulations (total 18 µs) and binding pose metadynamics simulations were investigated, resulting in five final hits. Furthermore, another MD simulation (total 2.1 µs) with different force fields demonstrated the binding ability of the five hits to CDK1. It was found that these five hits, CBMA001 (ΔG = -29.88 kcal/mol), CBMA002 (ΔG = -34.89 kcal/mol), CBMA004 (ΔG = -32.47 kcal/mol), CBMA007 (ΔG = -31.16 kcal/mol), and CBMA008 (ΔG = -34.78 kcal/mol) possessed much greater binding affinity to CDK1 than positive compound Flavopiridol (FLP, ΔG = -25.38 kcal/mol). Finally, CBMA002 and CBMA004 were identified as excellent selective CDK1 inhibitors in silico. Together, this study provides a workflow for rational drug design and two promising selective CDK1 inhibitors that deserve further investigation.


Assuntos
Proteína Quinase CDC2 , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Proteína Quinase CDC2/metabolismo , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina
17.
Eur J Med Chem ; 244: 114849, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274272

RESUMO

Encouraged by our previous findings and in continuation of our ongoing study project in designing and synthesis of novel Nur77-targeting anti-cancer agents, a series of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide derivatives were designed, synthesized and biologically evaluated as potent Nur77 modulators. Among synthesized compounds, 8b maintained good potency against different liver cancer cell lines and other types of cancer cell lines while exhibiting lower toxicity than the positive compound celastrol. Moreover, 8b displayed excellent Nur77-binding activity, superior to the lead compound 10g and comparable to the reference compound celastrol. The cytotoxic action of 8b towards cancer cells was associated with its induction of Nur77-mitochondrial targeting and Nur77-dependent apoptosis. Notably, 8b has good in vivo safety and anti-hepatocellular carcinoma (HCC) activity. Altogether, this study reveals that 8b is a novel Nur77 modulator with great promise for further research.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Indóis , Neoplasias Hepáticas , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Triterpenos Pentacíclicos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Relação Estrutura-Atividade , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Apoptose/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Terapia de Alvo Molecular
18.
Bioorg Chem ; 129: 106119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116323

RESUMO

JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 µM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/farmacologia , Pontos de Checagem do Ciclo Celular , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Piperidinas/farmacologia , Antineoplásicos/farmacologia , Aminas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
19.
Biomolecules ; 12(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35740872

RESUMO

The drug repurposing of known approved drugs (e.g., lopinavir/ritonavir) has failed to treat SARS-CoV-2-infected patients. Therefore, it is important to generate new chemical entities against this virus. As a critical enzyme in the lifecycle of the coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive target for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with a fragment-based drug design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CLpro. We obtained a series of derivatives from the lead compounds based on our structure-based optimization policy (SBOP). All of the 47 lead compounds obtained directly with our AI model and related derivatives based on the SBOP are accessible in our molecular library. These compounds can be used as potential candidates by researchers to develop drugs against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Inteligência Artificial , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais
20.
Bioorg Chem ; 121: 105651, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182885

RESUMO

Nur77, an orphan nuclear receptor, has antitumor activity in hepatocellular carcinoma (HCC). However, its antitumor mechanisms of action in HCC are complicated and rarely reported. Our recent work demonstrated that certain quinoline-Schiff-base derivatives were good Nur77 mediators that exerted excellent anti-HCC activities in vitro and in vivo. Interestingly, these compounds shared similar chemical structures, but they displayed different Nur77-targeted anticancer mechanisms of action. As a continuous work, we synthesized a series of 4-(quinoline-4-amino) benzoylhydrazide derivatives and evaluated their anti-HCC activity and binding affinity to Nur77 in vitro. Compound 4-PQBH emerged as the best Nur77 binder (KD = 1.17 µM) and has potentially selective cytotoxicity to HCC cells. Mechanistically, 4-PQBH extensively induced caspase-independent cytoplasmic vacuolization and paraptosis through Nur77-mediated ER stress and autophagy. Moreover, 4-PQBH exhibited an effective xenograft tumor inhibition by modulating Nur77-dependent cytoplasmic vacuolation and paraptosis. This paper is the first to disclose that chemotherapeutic agents targeting Nur77-mediated cytoplasmic vacuolization and paraptosis may provide a promising strategy to combat HCC that frequently evade the apoptosis program.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA