Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Hortic Res ; 10(11): uhad203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046854

RESUMO

Water caltrop (Trapa spp., Lythraceae) is a traditional but currently underutilized non-cereal crop. Here, we generated chromosome-level genome assemblies for the two diploid progenitors of allotetraploid Trapa. natans (4x, AABB), i.e., diploid T. natans (2x, AA) and Trapa incisa (2x, BB). In conjunction with four published (sub)genomes of Trapa, we used gene-based and graph-based pangenomic approaches and a pangenomic transposable element (TE) library to develop Trapa genomic resources. The pangenome displayed substantial gene-content variation with dispensable and private gene clusters occupying a large proportion (51.95%) of the total cluster sets in the six (sub)genomes. Genotyping of presence-absence variation (PAVs) identified 40 453 PAVs associated with 2570 genes specific to A- or B-lineages, of which 1428 were differentially expressed, and were enriched in organ development process, organic substance metabolic process and response to stimulus. Comparative genome analyses showed that the allotetraploid T. natans underwent asymmetric subgenome divergence, with the B-subgenome being more dominant than the A-subgenome. Multiple factors, including PAVs, asymmetrical amplification of TEs, homeologous exchanges (HEs), and homeolog expression divergence, together affected genome evolution after polyploidization. Overall, this study sheds lights on the genome architecture and evolution of Trapa, and facilitates its functional genomic studies and breeding program.

2.
Hortic Res ; 10(12): uhad237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156285

RESUMO

Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.

3.
J Hazard Mater ; 438: 129511, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809367

RESUMO

Toxic heavy metal cadmium (Cd) reduces crop yield and threatens human health via the food chain. The bioactive flavonoid 'Epigallocatechin-3-gallate' (EGCG) affects plant stress response; however, the function of EGCG in Cd tolerance and the molecular pathways remain largely unknown. Here, we revealed that root application of EGCG alleviated Cd stress in tomato plants. While Cd stress decreased Fv/Fm, ФPSII, photosynthetic rate, root growth, root vitality and biomass accumulation by increasing reactive oxygen species (ROS) accumulation and lipid peroxidation, exogenous EGCG minimized excessive ROS accumulation and oxidative stress by promoting the activity of antioxidant enzymes and redox poise in roots and leaves. Moreover, EGCG induced the transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and decreased Cd content and photoinhibition in leaves. Interestingly, similar to EGCG, exogenous H2O2 application also enhanced Cd tolerance; however, the application of an NADPH oxidase inhibitor, diphenyleneiodonium (DPI), aggravated Cd phytotoxicity and attenuated the beneficial effects of EGCG on plant tolerance to Cd stress, suggesting that root applied EGCG-induced expression of RBOH1 and associated H2O2 signaling mediate the EGCG-induced enhanced Cd tolerance. This work elucidates a fundamental mechanism behind EGCG-mediated Cd tolerance and contributes to our existing knowledge of stress resistance properties of EGCG in plants.


Assuntos
Solanum lycopersicum , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/metabolismo , Catequina/análogos & derivados , Humanos , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA