Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(38): 25985-25992, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728403

RESUMO

Near-infrared (NIR) luminescent materials have attracted wide research interest due to their unique photophysical properties for designing NIR light-emitting diodes (NIR LEDs). Here, a series of Cr3+-activated NIR-emitting solid solution phosphors, Gd1-xLux(Al1-xScx)3(BO3)4:0.01Cr3+ (GLASB:Cr3+) (x = 0 to 0.5), are successfully synthesized via a cosubstitution approach. The GLASB:Cr3+ phosphors reveal extraordinary optical performance with a desirable high IQE of 93.6%, considerable broadened FWHM (from 128 nm to 196 nm) and redshift of 119 nm (747 → 866 nm) as the amount of [Lu3+-Sc3+] ion doping increases. Moreover, their photoluminescent thermal stability is substantially improved, maintaining 105.7% of the initial integral intensity up to 150 °C, namely zero-thermal-quenching. The NIR pc-LED fabricated using the GLASB:Cr3+ phosphor generates an NIR output power of 46 mW and an electro-optical efficiency of 37% at a 120 mA input current. Finally, the characteristic NIR emission of this phosphor can not only be utilized in the fields of night-vision technology and biometric identification, but also exhibits a perfect match with the absorption of the bacteriochlorophyll (BChl) and light-harvesting protein (LHP) of photosynthetic bacteria (PSB), presenting a high application prospect for improving PSB photosynthesis.

2.
Phys Chem Chem Phys ; 25(25): 16866-16871, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314788

RESUMO

Due to the different sensitivities of the 2E and 4T2 energy levels of Cr3+ to the local environment, Cr3+-doped fluorescent materials appear as excellent candidates for highly sensitive temperature sensing based on luminescence intensity ratio technology. However, a way to broaden the strict Boltzmann temperature measuring range is rarely reported. In this work, through Al3+ alloying strategy, a series of SrGa12-xAlxO19:0.5%Cr3+(x = 0, 2, 4, and 6) solid-solution phosphors were synthesized. Remarkably, the introduction of Al3+ can play a role in regulating the crystal field around Cr3+ and the symmetry of [Ga/AlO6] octahedron, realizing the synchronous tuning of 2E and 4T2 energy levels when the temperature changes in a wide range, achieving the purpose of increasing the intensity difference of 2E → 4A2 and 4T2 → 4A2 transitions, so as to extend the temperature sensing range. Among all samples, SrGa6Al6O19:0.5%Cr3+ showed the widest temperature measuring range from 130 K to 423 K with Sa of 0.0066 K-1 and Sr of 1% K-1@130 K. This work proposed a feasible way to extend the temperature sensing range for transition metal-doped LIR-mode thermometers.

3.
Phys Chem Chem Phys ; 24(17): 9866-9874, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363243

RESUMO

As we know, defects caused in the synthetic process of metal halide perovskite are the most difficult to overcome, and greatly limit their photoelectric performances. Herein, a post-doped strategy was utilized to achieve an interesting morphology evolution from a standard octahedron to a snowflake-like sheet during the Mn2+-doped Cs2NaBiCl6 process, which realizes the obvious photoluminescence quantum efficiency (PLQY) enhancement of the Cs2NaBiCl6:Mn2+ phosphor. This surprising evolution is ascribed to the morphology collapse and reconstruction induced by Mn2+ exchange. The obtained phosphor exhibits enhanced 31.56% PLQY, which is two-fold higher than that synthesized by the traditional co-precipitation method, with broad emission spectrum and good PL color stability at 150 °C. Combined with the Cs2SnCl6 : 1mol%Bi3+ phosphor to fabricate the phosphor-converted light-emitting diode, bright white light emission with Ra = 88, CCT = 4320 K, CIE (0.36, 0.33) and a good application potential in high-resolution PL imaging agents was obtained. This work provides a possible effective strategy to improve the PL performance for impurity-doped lead-free metal halide perovskite.

4.
Inorg Chem ; 60(20): 15519-15528, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34617745

RESUMO

Cyan-emitting phosphors are important for near-ultraviolet (NUV) light-emitting diodes (LEDs) to gain high-quality white lighting. In the present work, a Bi3+-doped BaScO2F, R+ (R = Na, K, Rb) perovskite, which emits 506 nm cyan-green light under 360 or 415 nm excitation, is obtained via a high-temperature solid-state method for the first time. The obtained perovskite shows improved photoluminescence and thermal stability due to the charge compensation of Na+, K+, and Rb+ co-doping. Its spectral broadening is attributed to two centers Bi (1) and Bi (2), which are caused by the zone-boundary octahedral tilting due to the substitution of Bi3+ for the larger Ba2+. Employing the blend phosphors of Ba0.998ScO2F:0.001Bi3+,0.001K+ and the commercial BAM:Eu2+, YAG:Ce3+, and CaAlSiN3:Eu2+, a full-spectrum white LED device with Ra = 96 and CCT = 4434 K was fabricated with a 360 nm NUV chip. Interestingly, a novel strategy is proposed: the cyan-green Ba0.998ScO2F:0.001Bi3+,0.001K+ and orange Sr3SiO5:Eu2+ phosphors were packaged with a 415 nm NUV chip to produce the white LED with Ra = 85 and CCT = 4811 K.

5.
Inorg Chem ; 60(3): 1832-1838, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476132

RESUMO

The poor water resistance property of a commercial Mn4+-activated narrow-band red-emitting fluoride phosphor restricts its promising applications in high-performance white LEDs and wide-gamut displays. Herein, we develop a structural rigidity-enhancing strategy using a novel KHF2:Mn4+ precursor as a Mn source to construct a proton-containing water-resistant phosphor K2(H)TiF6:Mn4+ (KHTFM). The parasitic [HMnF6]- complexes in the interstitial site from the fall off the KHF2:Mn4+ are also transferred to the K2TiF6 host by ion exchange to form KHTFM with rigid bonding networks, improving the water resistance and thermostability of the sample. The KHTFM sample retains at least 92% of the original emission value after 180 min of water immersion, while the non-water-resistant K2TiF6:Mn4+(KTFM) phosphor maintains only 23%. Therefore, these findings not only illustrate the effect of protons on fluoride but also provide a novel insight into commercial water-resistant fluoride phosphors.

6.
Inorg Chem ; 59(12): 8298-8307, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32458681

RESUMO

Tuning crystal phase transformations is very important for obtaining polymorphs for phosphors with the ideal optical properties and stability. Mn4+-doped K2GeF6 (KGF) is a typical polymorphic phosphor, but the thermodynamic and kinetic mechanism of its phase transformation is still unclear. Herein, the phase transformation of polymorphs varying from P63mc KGF and trigonal KGF to P63mc Si4+-doped KGF is realized by introducing the synergistic action of an HF solution and Si4+ ions. The full structural refinements of KGF polymorphs at room temperature and the electronic band structure calculations were performed. The results show that the Si4+-doped hexagonal KGF polymorph with good photoluminescence properties is the most stable phase according to the calculated total energy landscape and relative formation energy. The morphologic changes were monitored in situ to clearly understand the rapid phase transformation mechanism, which proves that the phase transformation is driven by a simple precipitation-dissolution equilibrium and ionic exchange.

7.
RSC Adv ; 8(63): 36056-36062, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558494

RESUMO

(Tb1-x Mn x )3Al2(Al1-x Si x )3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG). Under 456 nm excitation, (Tb1-x Mn x )3Al2(Al1-x Si x )3O12:Ce3+ shows energy transfers (ET) in the host, which can be obtained from the red emission components to enhance color rendering. Moreover, (Tb1-x Mn x )3Al2(Al1-x Si x )3O12:Ce3+ (x = 0-0.2) exhibits substantial spectral broadening (68 → 86 nm) due to the 5d → 4f transition of Ce3+ and the 4T1 → 6A1 transition of Mn2+. The efficiency of energy transfer (η T, Ce3+ → Mn2+) gradually increases with increasing Mn2+ content, and the value reach approximately 32% at x = 0.2. Namely, the different characteristics of luminescence evolution based on the effect of structural variation by substituting the (MnSi)6+ pair for the larger (TbAl)6+ pair. Therefore, with structural evolution, the luminescence of the solid solution phosphors could be tuned from yellow to orange-red, tunable by increasing the content of MAS for the applications of white light emitting diodes (wLED).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA