Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 178: 117262, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111080

RESUMO

Hepatic fibrosis is intricately associated with dysregulation of gut microbiota and host metabolomes. Our previous studies have demonstrated that matrine can effectively reduce hepatosteatosis and associated disorders. However, it is poorly understood whether the gut microbiota involved in the attenuation of liver fibrosis by matrine. Herein we explored a novel mechanism of how oral administration of matrine alleviates liver fibrosis by modulating gut microbiota. Administration of matrine not only potently ameliorated liver fibrosis in carbon tetrachloride (CCl4)-induced mice, but also significantly preserved hepatic heat shock protein 72 (HSP72) in vivo and in vitro. Matrine was failed to reduce liver fibrosis when HSP72 upregulation was blocked by the HSP72 antagonist VER-155008. Also, consumption of matrine significantly alleviated gut dysbiosis and fecal metabonomic changes in CCl4-treated mice. Transplanted the faces of matrine-treated mice induced a remarkable upregulation of HSP72 and remission of fibrosis in liver in CCl4-exposed mice and inhibition of TGF-ß1-induced inflammatory response and epithelial-mesenchymal transition (EMT) in AML-12 cells. Furthermore, deficiency of HSP72 partly reversed the intestinal microbial composition that prevented matrine from reducing CCl4-induced liver fibrosis in mice. This study reveals the "gut microbiota-hepatic HSP72" axis as a key mechanism of matrine in reducing liver fibrosis and suggest that this axis may be targeted for developing other new therapies for liver fibrosis.

2.
Plant Sci ; 347: 112197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019089

RESUMO

Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.


Assuntos
Antioxidantes , Etilenos , Glycine max , Isoflavonas , Melatonina , Reguladores de Crescimento de Plantas , Glycine max/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Melatonina/metabolismo , Isoflavonas/metabolismo , Isoflavonas/biossíntese , Etilenos/metabolismo , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo
3.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891320

RESUMO

This study aimed to reveal the impact of MeJA and ZnSO4 treatments on the physiological metabolism of barley seedlings and the content of phenolic acid. The results showed that MeJA (100 µM) and ZnSO4 (4 mM) treatments effectively increased the phenolic acid content by increasing the activities of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase (PAL) and cinnamic acid 4-hydroxylase (C4H) and by up-regulating the expression of genes involved in phenolic acid synthesis. As a result of the MeJA or ZnSO4 treatment, the phenolic acid content increased by 35.3% and 30.9% at four days and by 33.8% and 34.5% at six days, respectively, compared to the control. Furthermore, MeJA and ZnSO4 treatments significantly increased the malondialdehyde content, causing cell membrane damage and decreasing the fresh weight and seedling length. Barley seedlings responded to MeJA- and ZnSO4-induced stress by increasing the activities of antioxidant enzymes and controlling their gene expression levels. Meanwhile, MeJA and ZnSO4 treatments significantly upregulated calcium-adenosine triphosphate, calmodulin-dependent protein kinase-related kinase, and calmodulin-dependent protein genes in barley seedlings. This suggested that Ca2+ may be the signaling molecule that promotes phenolic acid synthesis under MeJA and ZnSO4 treatment. This study deepens the understanding of the phenolic acid enrichment process in barley seedlings under MeJA and ZnSO4 treatments.

4.
Front Nutr ; 11: 1403293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899320

RESUMO

Phenolic acids are secondary metabolites in higher plants, with antioxidant, anticancer, and anti-aging effects on the human body. Therefore, foods rich in phenolic acids are popular. Methyl jasmonate (MeJA) promoted phenolic acids accumulation but also inhibited sprout growth. Melatonin (MT) was a new type of plant hormone that not only alleviated plants' abiotic stress, but also promoted the synthesis of plant-stimulating metabolism. This study aimed to elucidate the mechanism of exogenous MT on the growth and development, and phenolic acids metabolism of barley sprouts under MeJA treatment. The results showed that MT increased the phenolic acids content in sprouts by increasing the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase, and up-regulating the gene expression of phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate: coenzyme a ligase, and ferulic acid-5-hydroxylase. MT attenuated the growth inhibition of barley sprouts under MeJA stress by increasing the activities of regulated antioxidant enzymes and the expression of their corresponding genes. Furthermore, MT increased the NO content and induced Ca2+ burst in barley sprouts under MeJA stress. These events were inhibited by DL-4-Chlorophenylalanine. These results suggested that MT ameliorated growth inhibition and promoted the biosynthesis of phenolic acids in barley sprouts under MeJA stress.

5.
Food Chem ; 450: 139360, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640528

RESUMO

As the world's population and income levels continue to rise, there is a substantial increase in the demand for meat, which poses significant environmental challenges due to large-scale livestock production. This review explores the potential of microalgae as a sustainable protein source for meat analogues. The nutritional composition, functional properties, and environmental advantages of microalgae are analyzed. Additionally, current obstacles to large-scale microalgal food production are addressed, such as strain development, contamination risks, water usage, and downstream processing. The challenges associated with creating meat-like textures and flavors using techniques like extrusion and emulsion formation with microalgae are also examined. Lastly, considerations related to consumer acceptance, marketing, and regulation are summarized. By focusing on improvements in cultivation, structure, sensory attributes, and affordability, microalgae demonstrate promise as a transformative and eco-friendly protein source to enhance the next generation of meat alternatives.


Assuntos
Carne , Microalgas , Microalgas/química , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Animais , Humanos , Carne/análise , Valor Nutritivo , Substitutos da Carne
6.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540858

RESUMO

Exogenous abiotic stimulant treatments are a straightforward and effective method for enhancing secondary metabolites in plants. In this study, the response surface optimization method was used to optimize the conditions for enriching flavonoids in short-germinated black soybeans under a slight acid treatment, and the mechanism of flavonoid accumulation during black soybean germination was explored. The results show that the use of a 126.2 mM citric acid-sodium citrate buffer (pH 5.10) as a slight acid treatment resulted in the highest flavonoid content when the black soybeans were germinated for 24 h. Under these conditions, the isoflavonoid (glycitin, daidzein, and genistein) increased significantly, and the flavonoid content reached 2.32 mg/g FW. The microacidified germination treatment significantly increased the activities and relative gene expression levels of key enzymes involved in flavonoid metabolism (4-coumarate-CoA ligase and cinnamic acid 4-hydroxylase, etc.). However, the slight acid treatment inhibited the growth of the black soybeans and caused damage to their cells. This was evidenced by significantly higher levels of malondialdehyde, superoxide anion, and hydrogen peroxide compared to the control group. Furthermore, the antioxidant system in the short-germinated soybeans was activated by the slight acid treatment, leading to a significant increase in the activities and relative gene expression levels of catalase and peroxidase. The results above show that a slight acid treatment was beneficial in inducing the accumulation of flavonoids during the growth of black soybean sprouts. This lays a technical foundation for producing black soybean products that are rich in flavonoids.

7.
J Sci Food Agric ; 104(9): 5350-5359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38329450

RESUMO

BACKGROUND: Phenolic acid exhibits a variety of well-known physiological functions. In this study, optimal germination conditions to ensure total phenolic acid enrichment in barley sprouts induced by salicylic acid treatment and its effects on sprout physiology and activity, as well as the gene expression of key enzymes for phenolic acid biosynthesis, were investigated. RESULTS: When sprouts were treated with 1 mmol L-1 salicylic acid during germination and germinated at 25 °C for 4 days, the phenolic acid content was 1.82 times that of the control, reaching 1221.54 µg g-1 fresh weight. Salicylic acid significantly increased the activity of phenylalanine aminolase and cinnamic acid-4-hydroxylase and the gene expression of phenylalanine aminolase, cinnamic acid-3-hydroxylase, cinnamic acid-4-hydroxylase, 4-coumaric acid-coenzyme A, caffeic acid O-methyltransferase, and ferulate-5-hydroxylase in barley sprouts. However, salicylic acid treatment significantly increased malondialdehyde and H2O2 content, H2O2 and O2 - fluorescence intensity, as well as significantly decreasing sprout length and fresh weight. Salicylic acid treatment markedly increased the activity of peroxidase and catalase and the gene expression of peroxidase, catalase, and ascorbate peroxidase in barley sprouts. CONCLUSION: Salicylic acid treatment during barley germination significantly promoted the enrichment of total phenolic acid by increasing the activities and gene expression levels of enzymes involved in the phenolic acid biosynthesis pathway. Salicylic acid induced the accumulation of reactive oxygen species, inhibited sprout growth, and activated the antioxidant system. This study provides a basis for the future development of functional foods using phenol acid-rich plants as raw materials. © 2024 Society of Chemical Industry.


Assuntos
Germinação , Hordeum , Hidroxibenzoatos , Proteínas de Plantas , Ácido Salicílico , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/genética , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Hidroxibenzoatos/metabolismo , Germinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/efeitos dos fármacos , Sementes/química , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Catalase/genética
8.
Food Chem X ; 21: 101181, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38357373

RESUMO

The massive production of food waste and plastic pollution necessitates innovative solutions. This study reports the first fabrication of a flexible chitosan (CH) film reinforced with lignosulfonate (LS) derived from pulping byproduct as a sustainable alternative to synthetic food packaging. The CH/LS composite film was prepared by a simple casting method with varying LS contents of 1 % and 2 %. Compared to CH film, the addition of 2 % LS increased the tensile strength by over 4 times and decreased water vapor permeability by 11 %. Moreover, the CH/LS film exhibited excellent UV-shielding properties. This novel use of LS to reinforce CH film presents an eco-friendly active packaging material. When used to package cherry tomatoes for 2 weeks, the CH/LS film effectively maintained fruit freshness and hardness while minimizing weight loss. This work provides new scientific evidence on the optimized preparation and application of CH/LS composite films from renewable resources for food preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA