Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
MedComm (2020) ; 4(5): e346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37614965

RESUMO

Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.

2.
Int J Biol Sci ; 19(6): 1941-1954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063432

RESUMO

Rationale: Macrophages play a central role in the development and progression of nonalcoholic fatty liver disease (NAFLD). Studies have shown that Notch signaling mediated by transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBP-J), is implicated in macrophage activation and plasticity. Naturally, we asked whether Notch signaling in macrophages plays a role in NAFLD, whether regulating Notch signaling in macrophages could serve as a therapeutic strategy to treat NAFLD. Methods: Immunofluorescence staining was used to detect the changes of macrophage Notch signaling in the livers of human patients with NAFLD and choline deficient amino acid-defined (CDAA) diet-fed mice. Lyz2-Cre RBP-Jflox or wild-type C57BL/6 male mice were fed with CDAA or high fat diet (HFD) to induce experimental steatohepatitis or steatosis, respectively. Liver histology examinations were performed using hematoxylin-eosin (H&E), Oil Red O staining, Sirius red staining and immunohistochemistry staining for F4/80, Col1α1 and αSMA. The expression of inflammatory factors, fibrosis or lipid metabolism associated genes were evaluated by quantitative reverse transcription (qRT)-PCR, Western blot or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of liver samples was profiled by using RNA-seq. A hairpin-type decoy oligodeoxynucleotides (ODNs) for transcription factor RBP-J was loaded into bEnd.3-derived exosomes by electroporating. Mice with experimental NAFLD were treated with exosomes loading RBP-J decoy ODNs via tail vein injection. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. Results: The results showed that Notch signaling was activated in hepatic macrophages in human with NAFLD or in CDAA-fed mice. Myeloid-specific RBP-J deficiency decreased the expression of inflammatory factors interleukin-1 beta (IL1ß) and tumor necrosis factor alpha (TNFα), attenuated experimental steatohepatitis in mice. Furthermore, we found that Notch blockade attenuated lipid accumulation in hepatocytes by inhibiting the expression of IL1ß and TNFα in macrophages in vitro. Meanwhile, we observed that tail vein-injected exosomes were mainly taken up by hepatic macrophages in mice with steatohepatitis. RBP-J decoy ODNs delivered by exosomes could efficiently inhibit Notch signaling in hepatic macrophages in vivo and ameliorate steatohepatitis or steatosis in CDAA or HFD mice, respectively. Conclusions: Combined, macrophage RBP-J promotes the progression of NAFLD at least partially through regulating the expression of pro-inflammatory cytokines IL1ß and TNFα. Infusion of exosomes loaded with RBP-J decoy ODNs might be a promising therapy to treat NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição/metabolismo
3.
Nat Aging ; 3(3): 258-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118422

RESUMO

Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Cirrose Hepática/metabolismo , Inflamação , Endotélio/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 13(6): 1741-1756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114417

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (SECs) promote the proliferation of hepatocytes during liver regeneration. However, the specific subset of SECs and its mechanisms during the process remain unclear. In this study, we investigated the potential role of c-kit+ SECs, a newly identified subset of SECs in liver regeneration. METHODS: Partial hepatectomy mice models were established to induce liver regeneration. Hepatic c-kit expression was detected by quantitative reverse-transcription polymerase chain reaction, immunofluorescent staining, and fluorescence-activated cell sorting. VE-cadherin-cyclization recombinase-estrogen receptor (Cdh5-Cre-ERT) Notch intracellular domain and Cdh5-Cre recombination signal binding protein Jκfloxp mice were introduced to mutate Notch signaling. c-Kit+ SECs were isolated by magnetic beads. Single-cell RNA sequencing was performed on isolated SECs. Liver injuries were induced by CCl4 or quantitative polymerase chain reaction injection. RESULTS: Hepatic c-kit is expressed predominantly in SECs. Liver resident SECs contribute to the increase of c-kit during partial hepatectomy-induced liver regeneration. Isolated c-kit+ SECs promote hepatocyte proliferation in vivo and in vitro by facilitating angiocrine. The distribution of c-kit shows distinct spatial differences that are highly coincident with the liver zonation marker wingless-type MMTV integration site family, member2 (Wnt2). Notch mutation reshapes the c-kit distribution and liver zonation, resulting in altered hepatocyte proliferation. c-Kit+ SECs were shown to regulate hepatocyte regeneration through angiocrine in a Wnt2-dependent manner. Activation of the Notch signaling pathway weakens liver regeneration by inhibiting positive regulatory effects of c-kit+ SECs on hepatocytes. Furthermore, c-kit+ SEC infusion attenuates toxin-induced liver injuries in mice. CONCLUSIONS: Our results suggest that c-kit+ SECs contributes to liver zonation and regeneration through Wnt2 and is regulated by Notch signaling, providing opportunities for novel therapeutic approaches to liver injury in the future. Transcript profiling: GEO (accession number: GSE134037).


Assuntos
Células Endoteliais , Hepatócitos , Animais , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Camundongos
5.
Hepatology ; 76(3): 742-758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35006626

RESUMO

BACKGROUND AND AIMS: Although NASH can lead to severe clinical consequences, including cirrhosis and hepatocellular carcinoma, no effective treatment is currently available for this disease. Increasing evidence indicates that LSECs play a critical role in NASH pathogenesis; however, the mechanisms involved in LSEC-mediated NASH remain to be fully elucidated. APPROACH AND RESULTS: In the current study, we found that LSEC homeostasis was disrupted and LSEC-specific gene profiles were altered in methionine-choline-deficient (MCD) diet-induced NASH mouse models. Importantly, Notch signaling was found to be activated in LSECs of NASH mice. To then investigate the role of endothelial Notch in NASH progression, we generated mouse lines with endothelial-specific Notch intracellular domain (NICD) overexpression or RBP-J knockout to respectively activate or inhibit Notch signaling in endothelial cells. Notably, endothelial-specific overexpression of the NICD accelerated LSEC maladaptation and aggravated NASH, whereas endothelial cell-specific inhibition of Notch signaling restored LSEC homeostasis and improved NASH phenotypes. Furthermore, we demonstrated that endothelial-specific Notch activation exacerbated NASH by inhibiting endothelial nitric oxide synthase (eNOS) transcription, whereas administration of the pharmacological eNOS activator YC-1 alleviated hepatic steatosis and lipid accumulation resulting from Notch activation. Finally, to explore the therapeutic potential of using Notch inhibitors in NASH treatment, we applied two gamma-secretase inhibitors-DAPT and LY3039478-in an MCD diet-induced mouse model of NASH, and found that both inhibitors effectively ameliorated hepatic steatosis, inflammation, and liver fibrosis. CONCLUSIONS: Endothelial-specific Notch activation triggered LSEC maladaptation and exacerbated NASH phenotypes in an eNOS-dependent manner. Genetic and pharmacological inhibition of Notch signaling effectively restored LSEC homeostasis and ameliorated NASH progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio , Fígado/patologia , Cirrose Hepática/complicações , Metionina , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Hepatology ; 75(3): 584-599, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687050

RESUMO

BACKGROUND AND AIMS: The mechanisms involved in liver regeneration after partial hepatectomy (pHx) are complicated. Cellular senescence, once linked to aging, plays a pivotal role in wound repair. However, the regulatory effects of cellular senescence on liver regeneration have not been fully elucidated. APPROACH AND RESULTS: Mice subjected to pHx were analyzed 14 days after surgery. The incomplete remodeling of liver sinusoids affected shear stress-induced endothelial nitric oxide synthase (eNOS) signaling on day 14, resulting in the accumulation of senescent LSECs. Removing macrophages to augment LSEC senescence led to a malfunction of the regenerating liver. A dynamic fluctuation in Notch activity accompanied senescent LSEC accumulation during liver regeneration. Endothelial Notch activation by using Cdh5-CreERT NICeCA mice triggered LSEC senescence and senescence-associated secretory phenotype, which disrupted liver regeneration. Blocking the Notch by γ-secretase inhibitor (GSI) diminished senescence and promoted LSEC expansion. Mechanically, Notch-hairy and enhancer of split 1 signaling inhibited sirtuin 1 (Sirt1) transcription by binding to its promoter region. Activation of Sirt1 by SRT1720 neutralized the up-regulation of P53, P21, and P16 caused by Notch activation and eliminated Notch-driven LSEC senescence. Finally, Sirt1 activator promoted liver regeneration by abrogating LSEC senescence and improving sinusoid remodeling. CONCLUSIONS: Shear stress-induced LSEC senescence driven by Notch interferes with liver regeneration after pHx. Sirt1 inhibition accelerates liver regeneration by abrogating Notch-driven senescence, providing a potential opportunity to target senescent cells and facilitate liver repair after injury.


Assuntos
Senescência Celular , Regeneração Hepática , Receptores Notch , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Inibidores e Moduladores de Secretases gama/farmacologia , Hepatectomia/métodos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Fenótipo Secretor Associado à Senescência/genética
7.
Cell Metab ; 33(7): 1372-1388.e7, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34146477

RESUMO

Nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma and liver disorders have become the leading causes for the need of liver transplantation in developed countries. Lipotoxicity plays a central role in NASH progression by causing endoplasmic reticulum stress and disrupting protein homeostasis. To identify key molecules that mitigate the detrimental consequences of lipotoxicity, we performed integrative multiomics analysis and identified the E3 ligase tripartite motif 16 (TRIM16) as a candidate molecule. In particular, we found that lipid accumulation and inflammation in a mouse NASH model is mitigated by TRIM16 overexpression but aggravated by its depletion. Multiomics analysis showed that TRIM16 suppressed NASH progression by attenuating the activation of the mitogen-activated protein kinase (MAPK) signaling pathway; specifically, by preferentially interacting with phospho-TAK1 to promote its degradation. Together, these results identify TRIM16 as a promising therapeutic target for the treatment of NASH.


Assuntos
Fígado/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfoproteínas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais/genética
8.
Malar J ; 16(1): 275, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676111

RESUMO

BACKGROUND: Cross-border malaria transmission in China is a major component of Chinese imported malaria cases. Such cases mostly are travellers returning from malaria endemic countries in Africa. By investigating malaria infectious status among Chinese worker in Africa, this study analysed the malaria risk factors, in order to establish infectious forecast model. METHODS: Chinese returnees data from Africa were collected at Guangzhou Baiyun International Airport, Guangzhou, China between August 2015 and March 2016 and were included in the cross-sectional and retrospective survey. RESULTS: A total of 1492 respondents were included in the study with the majority consisting of junior middle school educated male. Most of them are manual and technical workers hired by companies, with average of 37.04 years of age. Overall malaria incidence rate of the population was 8.98% (134/1492), and there were no significant differences regarding age, gender, occupation, or team. Forecast model was developed on the basis of malaria risk factors including working country, local ecological environment type, work duration and intensity of mosquito bite prevention. CONCLUSIONS: The survey suggested that malaria incidence was high among Chinese travellers who had worked in Africa countries of heavy malaria burden. Further research on the frequency and severity of clinical episodes among Chinese travellers having worked in Africa is needed.


Assuntos
Aeroportos , Malária/epidemiologia , Viagem , Adolescente , Adulto , África Subsaariana , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Incidência , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
9.
Sci Rep ; 4: 5842, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25068486

RESUMO

Ultra-thin flexible glass with high transparency is attractive for a broad range of display applications; however, substrates with low optical haze are not ideal for thin film solar cells, since most of the light will go through the semiconductor layer without scattering, and the length of light travelling path in the active layer is small. By simply depositing a layer of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized wood fibers (TOWFs), we are able to tailor the optical properties of flexible glass dramatically from exhibiting low haze (<1%) to high haze (~56%) without compromising the total forward transmittance (~90%). The influence of the TOWFs morphology on the optical properties of TOWFs-coated flexible glass is investigated. As the average fiber length decreases, the transmission haze of TOWF-coated flexible glass illustrates a decreasing trend. Earth-abundant natural materials for transparent, hazy, and flexible glass have tremendous applicability in the fabrication of flexible optoelectronics with tunable light scattering effects by enabling inexpensive and large-scale processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA