Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(10): e7561, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19855843

RESUMO

The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae-its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the 'non-WGD' Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the 'post-WGD' genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/metabolismo , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Biologia Computacional/métodos , Genoma Fúngico , Genômica , Modelos Biológicos , Dados de Sequência Molecular , Oxigênio/química , Homologia de Sequência de Aminoácidos , Processos Estocásticos
2.
Eukaryot Cell ; 7(11): 1895-905, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18806211

RESUMO

The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28 degrees C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The DeltaKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis.


Assuntos
Regulação para Baixo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Kluyveromyces/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Kluyveromyces/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA