Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Stud Hist Philos Sci ; 108: 19-27, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357248

RESUMO

Gravitational redshift effects undoubtedly exist; moreover, the experimental setups which confirm the existence of these effects-the most famous of which being the Pound-Rebka experiment-are extremely well-known. Nonetheless-and perhaps surprisingly-there remains a great deal of confusion in the literature regarding what these experiments really establish. Our goal in the present article is to clarify these issues, in three concrete ways. First, although (i) Brown and Read (2016) are correct to point out that, given their sensitivity, the outcomes of experimental setups such as the original Pound-Rebka configuration can be accounted for using solely the machinery of accelerating frames in special relativity (barring some subtleties due to the Rindler spacetime necessary to model the effects rigorously), nevertheless (ii) an explanation of the results of more sensitive gravitational redshift outcomes does in fact require more. Second, although typically this 'more' is understood as the invocation of spacetime curvature within the framework of general relativity, in light of the so-called 'geometric trinity' of gravitational theories, in fact curvature is not necessary to explain even these results. Thus (a) one can often explain the results of these experiments using only the resources of special relativity, and (b) even when one cannot, one need not invoke spacetime curvature. And third: while one might think that the absence of gravitational redshift effects would imply that spacetime is flat (indeed, Minkowskian), this can be called into question given the possibility of the cancelling of gravitational redshift effects by charge in the context of the Reissner-Nordström metric. This argument is shown to be valid and both attractive forces as well as redshift effects can be effectively shielded (and even be repulsive or blueshifted, respectively) in the charged setting. Thus, it is not the case that the absence of gravitational effects implies a Minkowskian spacetime setting.

2.
Stud Hist Philos Sci ; 85: 16-29, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33966771

RESUMO

To-date, the most elaborated attempt to complete quantum mechanics by the addition of hidden variables is the de Broglie-Bohm (pilot wave) theory (dBBT). It endows particles with definite positions at all times. Their evolution is governed by a deterministic dynamics. By construction, however, the individual particle trajectories generically defy detectability in principle. Of late, this lore might seem to have been called into question in light of so-called weak measurements. Due to their characteristic weak coupling between the measurement device and the system under study, they permit the experimental probing of quantum systems without essentially disturbing them. It is natural therefore to think that weak measurements of velocity in particular offer to actually observe the particle trajectories. If true, such a claim would not only experimentally demonstrate the incompleteness of quantum mechanics: it would provide support of dBBT in its standard form, singling it out from an infinitude of empirically equivalent alternative choices for the particle dynamics. Here we examine this possibility. Our result is deflationary: weak velocity measurements constitute no new arguments, let alone empirical evidence, in favour of standard dBBT; One must not naïvely identify weak and actual positions. Weak velocity measurements admit of a straightforward standard quantum mechanical interpretation, independent of any commitment to particle trajectories and velocities. This is revealed by a careful reconstruction of the physical arguments on which the description of weak velocity measurements rests. It turns out that for weak velocity measurements to be reliable, one must already presuppose dBBT in its standard form: in this sense, they can provide no new argument, empirical or otherwise, for dBBT and its standard guidance equation.


Assuntos
Física , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA