Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 180: 108976, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116714

RESUMO

Keratoconus is a non-inflammatory bilateral disease, that usually occurs in the inferior-temporal region, where the cornea bulges out and becomes thinner, due to the gradual loss of structural organization in corneal tissue. Degenerated extracellular matrix and fibers breakage have been observed in keratoconic corneas, that may promote the progression of the pathology. While keratoconus histopathology has been widely described in literature, its etiology is still not clear. Being able to fully understand keratoconus growing process could be crucial to detect its development and improve prevention strategies. This work proposes a novel continuum-based keratoconus growth model. The proposed framework accounts for the structural changes occurring in the underlying tissue during the progression of the disease, as indicated in experiments. The developed formulation is able to replicate the typical bulging and thinning of keratoconic corneas, as well as different forms in terms of shape, as they are commonly classified in clinics (nipple, oval and globus cones). The cone that is obtained constitutes a permanent deformed state, not pressure dependent. The resulting model may help to better understand the etiology of the behavior of this disease with the aim of improving the diagnosis and the treatment of the pathology.


Assuntos
Córnea , Ceratocone , Modelos Biológicos , Ceratocone/metabolismo , Ceratocone/patologia , Humanos , Córnea/patologia , Córnea/metabolismo
2.
Transl Vis Sci Technol ; 13(5): 11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748408

RESUMO

Purpose: Computational models can help clinicians plan surgeries by accounting for factors such as mechanical imbalances or testing different surgical techniques beforehand. Different levels of modeling complexity are found in the literature, and it is still not clear what aspects should be included to obtain accurate results in finite-element (FE) corneal models. This work presents a methodology to narrow down minimal requirements of modeling features to report clinical data for a refractive intervention such as PRK. Methods: A pipeline to create FE models of a refractive surgery is presented: It tests different geometries, boundary conditions, loading, and mesh size on the optomechanical simulation output. The mechanical model for the corneal tissue accounts for the collagen fiber distribution in human corneas. Both mechanical and optical outcome are analyzed for the different models. Finally, the methodology is applied to five patient-specific models to ensure accuracy. Results: To simulate the postsurgical corneal optomechanics, our results suggest that the most precise outcome is obtained with patient-specific models with a 100 µm mesh size, sliding boundary condition at the limbus, and intraocular pressure enforced as a distributed load. Conclusions: A methodology for laser surgery simulation has been developed that is able to reproduce the optical target of the laser intervention while also analyzing the mechanical outcome. Translational Relevance: The lack of standardization in modeling refractive interventions leads to different simulation strategies, making difficult to compare them against other publications. This work establishes the standardization guidelines to be followed when performing optomechanical simulations of refractive interventions.


Assuntos
Simulação por Computador , Córnea , Análise de Elementos Finitos , Ceratectomia Fotorrefrativa , Humanos , Córnea/cirurgia , Córnea/fisiologia , Ceratectomia Fotorrefrativa/métodos , Simulação por Computador/normas , Lasers de Excimer/uso terapêutico , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA