Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Regen Ther ; 26: 646-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39281104

RESUMO

Objective: The effect of mesenchymal stem cells (MSCs) on the immortal characteristics of malignant cells, particularly hematologic cancer cells, remains a topic of debate, with the underlying mechanisms still requiring further elucidation. We explored the in vitro effect of the bone marrow-derived MSCs (BM-MSCs) on CD34+ leukemic stem cells (LSCs) enriched from the KG1-a cell line by assessing apoptosis, measuring cytokine levels, and examining TERT protein expression. Additionally, the potential signaling pathways implicated in this process, such as P53, PTEN, NF-κB, ERK1/2, Raf-1, and H-RAS, were also investigated. Methods: CD34+ LSCs were enriched from the KG1-a cell line with the magnetic activated cell sorting (MACS) method. Two cell populations (BM-MSCs and CD34+ LSCs) were co-cultured on trans well plates for seven days. Next, CD34+ LSCs were collected and subjected to Annexin V/PI assay, cytokine measurement, and western blotting. Results: BM-MSCs caused a significant increase in early and late apoptosis in the CD34+LSCs. The significant presence of interleukin (IL)-2 and IL-4 was evident in the co-cultured media. In addition, BM-MSCs significantly increased the protein expression of P53, PTEN, NF-κB, and significantly decreased p-ERK1/2, Raf-1, H-RAS, and TERT. Conclusion: The mentioned effects of IL-2 and IL-4 cytokines released from BM-MSCs on CD34+ LSCs as therapeutic agents were applied by the components of P53, PTEN, NF-κB, p-ERK1/2, Raf-1, and H-RAS signaling pathways.

2.
Tissue Cell ; 91: 102558, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260072

RESUMO

BACKGROUND: Stem cell-based therapy has emerged as an attractive approach for regenerative medicine. Poor survival and maintenance of the cells used in regenerative medicine are considered as serious barriers to enhance the efficacy of the cell therapy. Using some antioxidants has been reported to prevent the aging of stem cells, and finding effective factors to reduce the senescence of these cells has impressive potential in cell therapy. The PI3K pathway adversely regulates the transcription factors known as FOXO, which are thought to have an inhibitory influence on cell proliferation. By downregulating FOXO and other targets, PI3K signaling controls the growth of cells. For this reason, the aim of the present study is to investigate the effect of L-carnitine (LC) as antioxidant on the cell proliferation and the protein expression of PI3K and FOXO. METHODS: For understanding the in vitro effect of LC on the PI3K and FOXO-1 expression of C-kit+ hematopoietic progenitor cells, the bone marrow mononuclear cells were isolated, and C-kit+ cells was enriched by the magnetic-activated cell sorting (MACS). Next, the identification of enriched C-kit+ cells were done by flowcytometry and immunocytochemistry. Then, C-kit+ cells were treated with 0.2 mM LC, the cells were collected at the end of the treatment period (48 h), and the proteins were extracted. In the following, the protein expression of PI3K and FOXO-1 was measured by western blotting. In addition, flowcytometry was done to assess the Ki-67 expression as a key marker for cell proliferation investigation. RESULTS: 0.2 mM LC cause to significantly decrease in the protein expression of PI3K and FOXO-1 (*P<0.05 and **P<0.01, respectively). Also, the expression of Ki-67 was significantly increased in the presence of 0.2 mM LC (***P<0.001). CONCLUSION: Briefly, LC can be considered an effective factor in increasing the proliferation of C-kit+ cells via some signaling pathways.

3.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189177, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218403

RESUMO

Cell therapy has emerged as one of the most promising approaches to treating disease in recent decades. The application of stem cells in anti-tumor therapy is determined by their varying capacity for proliferation, migration, and differentiation. These capacities are derived from different sources. The use of stem cell carriers in cancer treatment is justified by the following three reasons: (I) shield therapeutic agents from swift biological deterioration; (II) reduce systemic side effects; and (III) increase local therapeutic levels since stem cells have an innate ability to target tumors. The quantity of stem cells confined to the tumor microenvironment determines this system's anti-tumor activity. Nevertheless, there are limitations to the use of different types of stem cells. When immune cells are used in cell therapy, it may lead to cytokine storms and improper reactions to self-antigens. Furthermore, the use of stem cells may result in cancer. Additionally, after an intravenous injection, cells could not migrate to the injury location. Exosomes derived from different cells were thus proposed as possible therapeutic options. Exosomes are becoming more and more well-liked because of their small size, biocompatibility, and simplicity in storage and separation. A number of investigations have shown that adding various medications and microRNAs to exosomes may enhance their therapeutic effectiveness. Thus, it is essential to evaluate studies looking into the therapeutic effectiveness of encapsulated exosomes. In this review, we looked at studies on encapsulated exosomes' use in regenerative medicine and the treatment of cancer. The results imply that the therapeutic potential increases when encapsulated exosomes are used rather than intact exosomes. Therefore, in order to optimize the effectiveness of the treatment, it is advised to implement this technique in accordance with the kind of therapy.


Assuntos
Vesículas Extracelulares , Hidrogéis , Células-Tronco Mesenquimais , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Exossomos/metabolismo , Microambiente Tumoral , Transplante de Células-Tronco Mesenquimais/métodos
4.
Bioimpacts ; 14(4): 27640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104619

RESUMO

Introduction: High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines. Methods: TNBC cells were treated with IC50 levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed. Results: The present results showed that IC50 level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone. Conclusion: The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.

5.
Heliyon ; 10(15): e35051, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157371

RESUMO

Hematopoietic stem cells (HSCs) are tightly regulated by specific microenvironments called niches to produce an appropriate number of mature blood cell types. Self-renewal and differentiation are two hallmarks of hematopoietic stem and progenitor cells, and their balance is critical for proper functioning of blood and immune cells throughout life. In addition to cell-intrinsic regulation, extrinsic cues within the bone marrow niche and systemic factors also affect the fate of HSCs. Despite this, many paracrine and endocrine factors that influence the function of hematopoietic cells remain unknown. In hematological malignancies, malignant cells remodel their niche into a permissive environment to enhance the survival of leukemic cells. These events are accompanied by loss of normal hematopoiesis. It is well known that extracellular vehicles (EVs) mediate intracellular interactions under physiological and pathological conditions. In other words, EVs transfer biological information to surrounding cells and contribute not only to physiological functions but also to the pathogenesis of some diseases, such as cancers. Therefore, a better understanding of cell-to-cell interactions may lead to identification of potential therapeutic targets. Recent reports have suggested that EVs are evolutionarily conserved constitutive mediators that regulate hematopoiesis. Here, we focus on the emerging roles of EVs in normal and pathological conditions, particularly in hematological malignancies. Owing to the high abundance of EVs in biological fluids, their potential use as biomarkers and therapeutic tools is discussed.

6.
J Transl Med ; 22(1): 783, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175068

RESUMO

A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.


Assuntos
Células-Tronco Pluripotentes Induzidas , Regeneração , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Coração/fisiologia , Miócitos Cardíacos/citologia , Medicina Regenerativa/métodos
7.
Int J Cardiol Heart Vasc ; 52: 101399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584674

RESUMO

Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.

8.
Heliyon ; 10(5): e26959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455550

RESUMO

Background: The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods: The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results: The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions: Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.

9.
Cell Biochem Funct ; 41(8): 1477-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014526

RESUMO

Acute myeloid leukemia (AML) is a highly lethal hematological malignancy in adults and children. Abnormal proliferation of leukemia stem cells (LSC) with CD34+ and CD38- phenotypes are the main clinical features of AML. Patients with AML face drug resistance and treatment failure due to a default in stem and progenitor cells. Therefore, defining LSC properties is necessary for targeting leukemia-initiating cells. Mitochondrial mass and activity increase in AML initiating cells compared with normal stem cells. This idea has offered the inhibition of the mitochondrial translation machinery to reduce the number of leukemia-initiating cells in patients with AML Tigecycline is an FDA-approved microbial antibiotic that inhibits oxidative phosphorylation in mitochondria, resulting in the suppression of leukemia cell proliferation with little toxicity to normal cells. Thus, the present study was conducted to evaluate whether LSC is influenced by mitochondrial inhibition. We measured the IC50 of tigecycline in KG-1a AML cell lines. KG-1a AML cell lines were separated into CD34+ and CD34- cells by MACS. In the following, these cells were treated with 20 µM (IC50) tigecycline. The expression of Annexin/PI, Caspase 3, apoptotic genes (BCL2, BCLX, BAX, BAD, and P53) and proteins (P53, BAX, BCL2 and Caspase 9) was evaluated in CD34+ , CD34- and KG-1a AML cells. In addition, the telomere length and expression of hTERT were evaluated in this study. The results indicated that BCl2 (gene and protein) and BCLX gene dramatically decreased. In addition, BAD, BAX, and P53 gene and protein expression significantly increased in CD34+ AML cells compared to CD34- AML cells. The results also suggested that tigecycline induced intrinsic (Cleaved-caspase 9/Pro-Caspase 9 ratio) and p53-mediated apoptosis. Furthermore, hTERT gene expression and telomere length decreased in the tigecycline-treated groups. Taken together, our findings indicate that inhibition of mitochondrial activity with tigecycline can induce apoptosis in cancer stem cells and can be used as a novel method for cancer therapy.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Adulto , Criança , Humanos , Caspase 9/genética , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Leucemia Mieloide Aguda/genética , Apoptose , Antígenos CD34/metabolismo , Células-Tronco Neoplásicas/metabolismo , Mitocôndrias/metabolismo , Telômero/metabolismo , Telômero/patologia
10.
Stem Cell Res Ther ; 14(1): 342, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017510

RESUMO

Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Oxidativo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
11.
Oxid Med Cell Longev ; 2023: 9328344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600065

RESUMO

Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for ß-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.


Assuntos
Carnitina , Neoplasias , Humanos , Carnitina/uso terapêutico , Relevância Clínica , Neoplasias/tratamento farmacológico , Carcinogênese , Membrana Celular , Proteínas de Membrana Transportadoras
12.
Regen Ther ; 24: 219-226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519907

RESUMO

Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells, capable of metastasis, recurrence, and drug resistance in breast cancer patients. Therefore, targeting BCSCs appears to be a promising strategy for the treatment and prevention of breast cancer metastasis. Mounting evidence supports the fact that carnitine, a potent antioxidant, modulates various mechanisms by enhancing cellular respiration, inducing apoptosis, and reducing proliferation and inflammatory responses in tumor cells. The objective of this study was to investigate the impact of L-carnitine (LC) on the rate of proliferation and induction of apoptosis in CD44+ CSCs. To achieve this, the CD44+ cells were enriched using the Magnetic-activated cell sorting (MACS) isolation method, followed by treatment with LC at various concentrations. Flow cytometry analysis was used to determine cell apoptosis and proliferation, and western blotting was performed to detect the expression levels of proteins. Treatment with LC resulted in a significant decrease in the levels of p-JAK2, p-STAT3, Leptin receptor, and components of the leptin pathway. Moreover, CD44+ CSCs-treated cells with LC exhibited a reduction in the proliferation rate, accompanied by an increase in the percentage of apoptotic cells. Hence, it was concluded that LC could potentially influence the proliferation and apoptosis of CD44+ CSC by modulating the expression levels of specific protein.

13.
Front Cell Dev Biol ; 11: 1162136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274742

RESUMO

Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.

14.
Regen Ther ; 23: 94-101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37206538

RESUMO

Mesenchymal stem cells (MSCs) are effective in hematopoietic engraftment and tissue repair in stem cell transplantation. In addition, these cells control the process of hematopoiesis by secreting growth factors and cytokines. The aim of the present study is to investigate the effect of rat bone marrow (BM)-derived MSCs on the granulocyte differentiation of rat BM-resident C-kit+ hematopoietic stem cells (HSCs). The mononuclear cells were collected from rat BM using density gradient centrifugation and MSCs and C-kit+ HSCs were isolated. Then, cells were divided into two groups and differentiated into granulocytes; C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Subsequently, the granulocyte-differentiated cells were collected and subjected to real-time PCR and Western blotting for the assessment of their telomere length (TL) and protein expressions, respectively. Afterwards, culture medium was collected to measure cytokine levels. CD34, CD16, CD11b, and CD18 granulocyte markers expression levels were significantly increased in the experimental group compared to the control group. A significant change was also observed in the protein expression of Wnt and ß-catenin. In addition, MSCs caused an increase in the TL of granulocyte-differentiated cells. MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing TL and Wnt/ß-catenin protein expression.

15.
Life Sci ; 323: 121714, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088411

RESUMO

Tumor heterogeneity is a major problem in cancer treatment. Cancer stem cells (CSCs) are a subpopulation of tumor masses that produce proliferating and quiescent cells. Under stress-related conditions, quiescent cells are capable of repopulating tumor masses. Consequently, many attempts have been made to identify, isolate, and eradicate CSCs from various tumors. Research has found that quiescent CSCs are less susceptible to conventional therapy than bulk cancer cells. This could be due to reduced cell cycling and increased DNA repair capacity of these cells. Indeed, disease progression is temporarily suppressed by eliminating fast-proliferating tumor cells and sparing quiescent CSCs lead to cancer relapse. Among all the available therapeutic modalities for cancer treatment, hyperthermia uses moderate heat to kill tumor cells. Nanoparticle-based platforms have the potential to deposit heat locally and selectively with the simultaneous activation of nanoparticles as heat transducers. Over the past few decades, magnetic nanoparticles (MNPs) have been widely investigated in the biomedical field. Magnetic hyperthermia therapy (MHT) is a promising therapeutic approach in which MNPs are delivered directly through targeting (systemic) or by direct injection into a tumor under exposure to an alternating magnetic field (AMF). Heat is generated by the MNPs subjected to AMF at a frequency of 100 kHz. Despite the widespread use of MHT alone or in combination therapies, its effectiveness in targeting CSCs remains unclear. This review discusses various types of MHT and their related mechanisms in cancer therapy, particularly concerning the eradication of CSCs.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Terapia Combinada , Células-Tronco Neoplásicas , Campos Magnéticos
16.
Clin Transl Oncol ; 25(8): 2559-2568, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36964888

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, accounting for 20% of cases. Due to the lack of a molecular target, limited options are available for TNBC treatment. Radiation therapy (RT) is a treatment modality for the management of TNBC following surgery; however, it has a detrimental effect on surrounding healthy tissues/cells at a higher rate. METHODS: We examined the effect of RT in combination with chrysin as a possible radiosensitizing agent in an MDA-MB-231 cell line as a model of a TNBC. The growth inhibitory effects of chrysin were examined using an MTT assay. Flow cytometry was performed to evaluate apoptosis and expression of hypoxia-induced factor-1α (HIF-1α). The protein expression of p-STAT3/STAT3 and Cyclin D1 was examined using western blotting. Real-time PCR determined apoptotic-related genes (Bax, BCL2, p53). RESULTS: Treatment of MDA-MB-231 cells with chrysin in combination with RT caused synergistic antitumor effects, with an optimum combination index (CI) of 0.495. Our results indicated that chrysin synergistically potentiated RT-induced apoptosis in MDA-MB-231 compared with monotherapies (chrysin and/or RT alone). Expression of HIF-1α was decreased in the cells exposed to combinational therapy. The apoptotic effect of combinational therapy was correlated with increased Bax (pro-apoptotic gene) and p53 levels along with reduced expression of Bcl-2 (anti-apoptotic gene). Increased apoptosis was associated with reduced expression of Cyclin D1, p-STAT3. CONCLUSION: These findings highlight the potential effect of chrysin as a radiosensitizer, indicating the synergistic anti-cancer effect of chrysin and RT in TNBC. Further investigation is warranted in this regard.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/genética , Ciclina D1/metabolismo , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células , Apoptose
17.
Transpl Immunol ; 77: 101797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720394

RESUMO

Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.


Assuntos
Células-Tronco Hematopoéticas , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Citocinas/metabolismo , Diferenciação Celular , RNA Mensageiro
18.
Curr Mol Med ; 23(3): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35040412

RESUMO

BACKGROUND: DNA methylation was considered as prognostic information in some hematological malignancies. Previous studies have reported the in vitro and in vivo biology role of mesenchymal stem cells (MSCs) on leukemic cells. The aim of this study was to investigate the effect of MSCs on the promoter methylation status of hTERT as a catalytic subunit of telomerase enzyme. METHODS: In the experimental study, the Molt-4 leukemic cells were co-cultured with MSCs for 7 days. At the end of the co-culture period, the Molt-4 cells were collected, DNA and protein were extracted. Then methylation specific-PCR and western blotting were done for evaluating the hTERT gene promoter methylation status and cyclin D1 and hTERT protein expression, respectively. In the following, the flow cytometry was done for cell cycle distribution assay. RESULTS: It was found that MSCs resulted in a significant decrease in the cyclin D1 and hTERT protein expression levels. Also, MSCs caused changes in the methylation status of the CpG islands in the hTERT gene promoter region. The following results showed that MSCs caused a significant increase in the number of cells at G0/G1 phase and arrest the G0/G1 phase as well as decrease in the cell proliferation of Molt-4 cells. CONCLUSION: It is concluded that co-culture of MSCs with Molt-4 cells could be involved in changing the methylation status of hTERT gene promoter, cell cycle and hTERT protein expression; it could be potentially beneficial for further investigations regarding the cell transplantation and cell-based therapy.


Assuntos
Leucemia , Células-Tronco Mesenquimais , Humanos , Ilhas de CpG/genética , Ciclina D1/genética , Metilação de DNA , Regiões Promotoras Genéticas , Tecido Adiposo
19.
Curr Drug Targets ; 24(2): 118-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36154570

RESUMO

Epidemiological evidence continues to accumulate on the effect of stress and depression on cancer initiation and progression. Depression has been introduced as an independent predictor of increased cancer mortality. At the same time, early intervention for depression increases the survival rate. Even some evidence has given prognostic value for depression to predict cancer recurrence and mortality. This article presents current evidence on the correlations of molecular mechanisms of cancer and depression through; I. The evidence shows the role of pre-existing depression and anxiety in the development and progression of cancer. II. The Immune system performs a crucial role in stress, depression, and cancer. III. The role of stress and depression-induced inflammation. IV. The evidence has proposed that cancer may result in depression and the effect of depression on cancer outcomes. In conclusion, the importance of preventive interventions to monitor patients' mental health during cancer treatment is very significant and should not be underestimated. In other words, the initial interventions can improve depressive symptoms and increase cancer survival. On the other hand, by identifying key biomarkers of depression, physicians can identify cancer patients at risk for depression or those who may not respond to routine treatments. Revealing the molecular mechanism of the cancer microenvironment in the development of comorbidities promises innovative therapeutic options for cancer. Identifying these mechanisms opens a new avenue in identifying cancer patients at risk for depression and can also provide considerable potential in identifying depressive patients prone to cancer.


Assuntos
Depressão , Neoplasias , Humanos , Depressão/complicações , Ansiedade/complicações , Transtornos de Ansiedade , Microambiente Tumoral
20.
Curr Stem Cell Res Ther ; 18(2): 231-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546751

RESUMO

BACKGROUND: Increased oxygen species levels can induce mitochondrial DNA damage and chromosomal aberrations and cause defective stem cell differentiation, leading finally to senescence of stem cells. In recent years, several studies have reported that antioxidants can improve stem cell survival and subsequently affect the potency and differentiation of these cells. Finding factors, which reduce the senescence tendency of stem cells upon expansion, has great potential for cellular therapy in regenerative medicine. This study aimed to evaluate the effects of L-carnitine (LC) on the aging of C-kit+ hematopoietic progenitor cells (HPCs) via examining the expression of some signaling pathway components. METHODS: For this purpose, bone marrow resident C-kit+ HPCs were enriched by the magnetic-activated cell sorting (MACS) method and were characterized using flow cytometry as well as immunocytochemistry. Cells were treated with LC, and at the end of the treatment period, the cells were subjected to the realtime PCR technique along with a western blotting assay for measurement of the telomere length and assessment of protein expression, respectively. RESULTS: The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the TERT protein expression. In addition, a significant increase was observed in the protein expression of p38, p53, BCL2, and p16 as key components of the telomere-dependent pathway. CONCLUSION: It can be concluded that LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the C-kit+ HPCs via these signaling pathway components.


Assuntos
Medula Óssea , Carnitina , Humanos , Carnitina/farmacologia , Carnitina/metabolismo , Senescência Celular/genética , Células-Tronco Hematopoéticas , Telômero/genética , Células da Medula Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA