Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39163097

RESUMO

The versatility of metal-organic frameworks (MOFs) has led to groundbreaking applications in a wide variety of fields, especially in the areas of energy, environment, and sustainability. For example, MOFs can be designed for high uptake of toxic gases and pollutants, such as CO2, NH3, and SO2, but designing a single MOF that shows tangible uptake for all of these gases is challenging due to the differences in the chemical and physical properties of these molecules. To this end, integrating multiple MOFs onto textile fibers and crafting various structures have emerged as pivotal developments, enhancing framework durability and usability. MOF composites prepared on readily available textile fibers offer the flexibility essential for critical applications, including heterogeneous catalysis, chemical sensing, toxic gas adsorption, and drug delivery, while preserving the unique characteristics of MOFs. This study introduces a scalable and adaptable method for seamlessly embedding multiple high-performing MOFs onto a single textile fiber using a dip-coating method. We explored the uptake capacity of these multi-MOF composites for CO2, NH3, and SO2 and observed a performance similar to that of traditional powdered materials. Along with harmful gas adsorption, we also have evaluated the permeation and reactivity of these MOF/textile composites toward chemical warfare agents (CWAs) like GD (soman), HD (mustard gas), and VX. In combination, these results demonstrate a fundamental advancement toward establishing a consistent strategy for the hydrolysis of nerve agents in real-world scenarios. This approach can substantially increase the protection toward CWAs and enhance the effectiveness of protective equipment such as fabrics for protective garments. This dip-coating method for the integration of multiple MOFs on a single textile fiber unlocks a wealth of possibilities and paves the way for future innovations in the deployment of MOF-based composites.

2.
Nat Mater ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117910

RESUMO

Metal-organic frameworks (MOFs) have captivated researchers for over 25 years, yet few have successfully transitioned to commercial markets. This Perspective elucidates the progress, challenges and opportunities in moving MOFs to market, focusing on applied research. The five applied research steps that enable technology development and demonstration are reviewed: synthesis, forming, processing (washing and activation), prototyping and compliance. Furthermore, the importance of a comprehensive techno-economic analysis incorporating a complete picture of costs and revenues is discussed. Readers can use the understanding of applied research presented herein to tackle their MOF commercialization challenges.

3.
J Am Chem Soc ; 146(31): 21806-21814, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056747

RESUMO

Water adsorption/desorption cyclability of porous materials is a prerequisite for diverse applications, including atmospheric water harvesting (AWH), humidity autocontrol (HAC), heat pumps and chillers, and hydrolytic catalysis. However, unambiguous molecular insights into the correlation between underlying building blocks and the cyclability are still highly elusive. In this work, by taking advantage of the well-established isoreticular synthetic principle in Zr(IV) metal-organic frameworks (Zr-MOFs), we show that the inherent density of hydrogen atoms in the organic skeleton can play a key role in regulating the water sorption cyclability of MOFs. The ease of isoreticular practice of Zr-MOFs enables the successful syntheses of two pairs of isostructural Zr-MOFs (NU-901 and NU-903, NU-950 and SJTU-9) from pyrene- or benzene-cored carboxylate linkers, which feature scu and sqc topological nets, respectively. NU-901 and NU-950 comprised of pyrene skeletons carrying more hydrogen-bonding anchoring sites show distinctly inferior cyclability as compared with NU-903 and SJTU-9 built of benzene units. Single-crystal X-ray crystallography analysis of the hydrated structure clearly unveils the water molecule-involved interactions with the hydrogen-bonding donors of benzene moieties. Remarkably, NU-903 and SJTU-9 isomers exhibit outstanding water vapor sorption capacities as well as working capacities at the desired humidity range with potential implementations covering indoor humidity control and water harvesting. Our findings uncover the importance of hydrogen-bonding anchoring site engineering of organic scaffold in manipulating the framework durability toward water sorption cycle and will also likely facilitate the rational design and development of highly robust porous materials.

4.
ACS Appl Mater Interfaces ; 16(26): 33371-33378, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38915181

RESUMO

Metal-organic frameworks (MOFs) have garnered substantial attention for their unique properties, such as high porosity and tunable structures, making them versatile for various applications. This paper constructs photoactive titanium-organic frameworks by combining Ti(IV) clusters and a bipyridine linker. The MOF is synthesized in situ through imine condensation, resulting in NU-2300. Subsequent ex situ nickel salt complexation results in NU-2300-Ni, which is then used for light-mediated carbon-heteroatom cross-couplings. The photophysical properties of the metallaphotocatalyst were investigated by UV-vis and EPR analyses, and both the Ti cluster and the bipyridine linker were found to contribute to successful catalysis, making it a tandem catalyst. The heterogeneous material retained its performance through five cycles of thioetherification. This work contributes not only to MOF synthetic strategies but also to expanding MOF applications as recyclable, tandem metallaphotocatalysts.

5.
ACS Appl Mater Interfaces ; 16(24): 31798-31806, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38835166

RESUMO

Surface barriers are commonly observed in nanoporous materials. Although researchers have explored methods to repair defects or create flawless crystals to mitigate surface barriers, these approaches may not always be practical or readily achievable in targeted metal-organic frameworks (MOFs). In our study, we propose an alternative approach focusing on the introduction of diverse ligands onto a MOF-808 node to finely adjust its adsorption and mass transport characteristics. Significantly, our findings indicate that while adsorption curves can be inferred based on the MOF's chemical composition and the probing molecule, surface permeabilities exhibit variations dependent on the specific probe utilized and the incorporated ligand. Our investigation, considering van der Waals forces exclusively between the adsorbate (e.g., n-hexane, propane, and benzene) and the adsorbent, revealed that augmenting these interactions can indeed improve surface permeation to a certain extent. Conversely, strong adsorption resulting from hydrogen bonding interactions, particularly with water in modified MOFs, led to compromised permeation within the MOF crystals. These outcomes provide valuable insights for the porous materials community and offer guidance in the development of adsorbents with enhanced affinity and superior mass transport properties for gases and vapors.

6.
ACS Appl Mater Interfaces ; 16(24): 31534-31542, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856659

RESUMO

The integration of metal-organic frameworks (MOFs) into composite systems serves as an effective strategy to increase the processability of these materials. Notably, MOF/fiber composites have shown much promise as protective equipment for the capture and remediation of chemical warfare agents. However, the practical application of these composites requires an understanding of their mass transport properties, as both mass transfer resistance at the surface and diffusion within the materials can impact the efficacy of these materials. In this work, we synthesized composite fibers of MOF-808 and amidoxime-functionalized polymers of intrinsic microporosity (PIM-1-AX) and measured the adsorption and mass transport behavior of n-hexane and 2-chloroethyl ethyl sulfide (CEES), a sulfur mustard simulant. We developed a new Fickian diffusion model for cylindrical shapes to fit the dynamic adsorption data obtained from a commercial volumetric adsorption apparatus and found that mass transport behavior in composite fibers closely resembled that in the pure PIM fibers, regardless of MOF loading. Moreover, we found that n-hexane adsorption mirrors that of CEES, indicating that it could be used as a structural mimic for future adsorption studies of the sulfur mustard simulant. These preliminary insights and the new model introduced in this work lay the groundwork for the design of next-generation composite materials for practical applications.

7.
ACS Appl Mater Interfaces ; 16(23): 30296-30305, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38825765

RESUMO

Polyoxometalates (POMs) are discrete anionic clusters whose rich redox properties, strong BroÌ·nsted acidity, and high availability of active sites make them potent catalysts for oxidation reactions. Metal-organic frameworks (MOFs) have emerged as tunable, porous platforms to immobilize POMs, thus increasing their solution stability and catalytic activity. While POM@MOF composite materials have been widely used for a variety of applications, little is known about the thermodynamics of the encapsulation process. Here, we utilize an up-and-coming technique in the field of heterogeneous materials, isothermal titration calorimetry (ITC), to obtain full thermodynamic profiles (ΔH, ΔS, ΔG, and Ka) of POM binding. Six different 8-connected hexanuclear Zr-MOFs were investigated to determine the impact of MOF topology (csq, scu, and the) on POM encapsulation thermodynamics.

8.
Adv Mater ; 36(33): e2405924, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850277

RESUMO

Here, an ionic polymer of intrinsic microporosity (PIM) as a high-functioning supercapacitor electrode without the need for conductive additives or binders is reported. The performance of this material is directly related to its large accessible surface area. By comparing electrochemical performance between a porous viologen PIM and a nonporous viologen polymer, it is revealed that the high energy and power density are both due to the ability of ions to rapidly access the ionic PIM. In 0.1 m H2SO4 electrolyte, a pseudocapacitve energy of 315 F g-1 is observed, whereas in 0.1 m Na2SO4, a capacitive energy density of 250 F g-1 is obtained. In both cases, this capacity is retained over 10 000 charge-discharge cycles, without the need for stabilizing binders or conductive additives even at moderate loadings (5 mg cm-2). This desirable performance is maintained in a prototype symmetric two-electrode capacitor device, which has >99% Coloumbic efficiency and a <10 mF capacity drop over 2000 cycles. These results demonstrate that ionic PIMs function well as standalone supercapacitor electrodes and suggest ionic PIMs may perform well in other electrochemical devices such as sensors, ion-separation membranes, or displays.

9.
J Am Chem Soc ; 146(22): 15130-15142, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795041

RESUMO

Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.

10.
ACS Appl Mater Interfaces ; 16(23): 30020-30030, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814279

RESUMO

Titanium-oxo clusters, with their robust structure and suitable optical and electronic properties, have been widely investigated as photocatalysts. Heterometallic Ti/M-oxo clusters provide additional tunability and functionality, which enable systematic structure-activity investigations to elucidate the reaction mechanisms and improve the catalyst design. Incorporating cerium into Ti-oxo clusters can provide additional redox (CeIV/CeIII) and oxygen harvesting ability, but to date, only a limited number of structurally defined titanium-cerium (Ti/Ce) clusters have been reported due to their synthetic challenges. Herein, we report the synthesis and photocatalytic properties of two structurally defined Ti/Ce-oxo clusters, Ti8Ce2(BA)16 and Ti9Ce4(BA)20, as well as a TiCe-BA cluster with a calculated formula of Ti20Ce9O36(BA)42. Photocatalytic study of these clusters demonstrates that the amount of Ce3+ species greatly impacts its photocatalytic oxidation performance, and their superior photocatalytic reactivity toward aerobic alcohol oxidation can be contributed to the synergistic effects of the multiple radical species generated upon light absorption. This work represents a significant milestone in the construction of stable Ti/Ce-oxo clusters, enriching the current library of known heterometallic Ti/M-oxo clusters, and providing a series of crystalline materials with great promise of photoluminescence and photovoltaic chemistry.

11.
Science ; 384(6695): 540-546, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696554

RESUMO

Although technologically promising, the reduction of carbon dioxide (CO2) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (α-Mo2C), prepared through a facile and scalable route, offers 100% selectivity for CO2 reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600°C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-Mo2C interactions, and interstitial oxygen atoms, respectively. Mechanistic studies and density functional theory (DFT) calculations provided evidence that the reaction proceeds through an H2-aided redox mechanism.

12.
Langmuir ; 40(15): 8024-8034, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574282

RESUMO

Sulfur dioxide (SO2) is a harmful acidic gas generated from power plants and fossil fuel combustion and represents a significant health risk and threat to the environment. Benzimidazole-linked polymers (BILPs) have emerged as a promising class of porous solid adsorbents for toxic gases because of their chemical and thermal stability as well as the chemical nature of the imidazole moiety. The performance of BILPs in SO2 capture was examined by synergistic experimental and theoretical studies. BILPs exhibit a significantly high SO2 uptake of up to 8.5 mmol g-1 at 298 K and 1.0 bar. The density functional theory (DFT) calculations predict that this high SO2 uptake is due to the dipole-dipole interactions between SO2 and the functionalized polymer frames through O2S(δ+)···N(δ-)-imine and O═S═O(δ-)···H(δ+)-aryl and intermolecular attraction between SO2 molecules (O═S═O(δ-)···S(δ+)O2). Moderate isosteric heats of adsorption (Qst ≈ 38 kJ mol-1) obtained from experimental SO2 uptake studies are well supported by the DFT calculations (≈40 kJ mol-1), which suggests physisorption processes enabling rapid adsorbent regeneration for reuse. Repeated adsorption experiments with almost identical SO2 uptake confirm the easy regeneration and robustness of BILPs. Moreover, BILPs possess very high SO2 adsorption selectivity at low concentration over carbon dioxide (CO2), methane (CH4), and nitrogen (N2): SO2/CO2, 19-24; SO2/CH4, 118-113; SO2/N2, 600-674. This study highlights the potential of BILPs in the desulfurization of flue gas or other gas mixtures through capturing trace levels of SO2.

13.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593469

RESUMO

Hydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites. Through a judicious selection of three N-heterocyclic auxiliary linkers of specific lengths, we installed them into designated sites, giving rise to six new MOFs bearing different combinations of linkers in predetermined positions. The resulting MOFs, denoted as NU-606 to NU-611, demonstrate enhanced structural stability against capillary force-driven channel collapse during water desorption due to the increased connectivity of the Zr6 clusters in the resulting MOFs. Furthermore, incorporating these auxiliary linkers with various hydrophilic N sites enables the systematic modulation of the pore-filling pressure from about 55% relative humidity (RH) for the parent NU-600 down to below 40% RH. This topology-driven linker installation strategy offers precise control of water sorption properties for MOFs, highlighting a facile route to design MOF adsorbents for use in water sorption applications.

14.
J Am Chem Soc ; 146(8): 5108-5117, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367279

RESUMO

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos Ftálicos , Estruturas Metalorgânicas/química , Zircônio/química , Biomimética , Compostos Organometálicos/química , Peroxidase do Rábano Silvestre
15.
ACS Appl Mater Interfaces ; 16(6): 8130-8139, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315161

RESUMO

Three copolymers with conjugated structures, PTB1-PTB3, were produced utilizing a palladium-catalyzed cyclopentannulation polymerization by reacting a specially designed diethynyl Tröger's base surrogate with different dihalogenated polycondensed aromatic hydrocarbons. Brunauer, Emmet, and Teller nitrogen gas adsorption investigation revealed the surface areas of the copolymers, attaining ∼365 m2 g-1. Gas uptake studies demonstrated a considerable carbon dioxide uptake for PTB2 of 44.41 mg g-1 at 273 K and a promising H2 gas uptake of 3.18 mg g-1 at 77 K. PTB1-PTB3 displayed a sizable iodine adsorption capacity, achieving 4000 mg g-1, and mechanistic investigations demonstrated the prevalence of a pseudo-second-order kinetic model. Recyclability experiments proved the effective regeneration of the copolymers, even after performing several adsorption and desorption tests.

16.
Dalton Trans ; 53(12): 5495-5506, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415508

RESUMO

Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.

17.
J Am Chem Soc ; 146(8): 5661-5668, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353616

RESUMO

Organophosphorus chemicals, including chemical warfare agents (CWAs) and insecticides, are acutely toxic materials that warrant capture and degradation. Metal-organic frameworks (MOFs) have emerged as a class of tunable, porous, crystalline materials capable of hydrolytically cleaving, and thus detoxifying, several organophosphorus nerve agents and their simulants. One such MOF is M-MFU-4l (M = metal), a bioinspired azolate framework whose metal node is composed of a variety of divalent first-row transition metals. While Cu-MFU-4l and Zn-MFU-4l are shown to rapidly degrade CWA simulants, Ni-MFU-4l and Co-MFU-4l display drastically lower activities. The lack of reactivity was hypothesized to arise from the strong binding of the phosphate product to the node, which deactivates the catalyst by preventing turnover. No such study has provided detailed insight into this mechanism. Here, we leverage isothermal titration calorimetry (ITC) to monitor the binding of an organophosphorus compound with the M-MFU-4l series to construct a complete thermodynamic profile (Ka, ΔH, ΔS, ΔG) of this interaction. This study further establishes ITC as a viable technique to probe small differences in thermodynamics that result in stark differences in material properties, which may allow for better design of first-row transition metal MOF catalysts for organophosphorus hydrolysis.

18.
J Am Chem Soc ; 146(3): 2141-2150, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38191288

RESUMO

Control of humidity within confined spaces is critical for maintaining air quality and human well-being, with implications for environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites. However, existing techniques rely on energy-intensive electrically driven equipment or complex temperature and humidity control (THC) systems, resulting in imprecision and inconvenience. The development of innovative techniques and materials capable of simultaneously meeting the stringent requirements of practical applications holds the key to creating intelligent and energy-efficient humidity control devices. In this study, we introduce chiral reticular chemistry as a tailored synthetic approach, targeting a highly porous hea topological framework characterized by intrinsic interpenetrating pore architecture. This groundbreaking design successfully circumvents the traditional compromise between the pore volume and hydrolytic stability. Our metal-organic framework (MOF) exhibits an extraordinary working capacity, setting a new record at 1.35 g g-1 within the relative humidity (RH) range of 40-60%, without exhibiting hysteresis. Consequently, it emerges as a state-of-the-art candidate for intelligent humidity regulation within confined spaces. Utilizing single-crystal X-ray measurements and molecular simulations, we unequivocally elucidate the mechanism of water clustering and pore filling, underscoring the pivotal role of the linker functionality in governing the water seeding process. Our findings represent a significant advancement in the field, paving the way for the development of highly efficient humidity control technologies and offering promising solutions for diverse real-world scenarios.

19.
ACS Appl Mater Interfaces ; 16(4): 5093-5102, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236238

RESUMO

Metal-organic frameworks (MOFs) have demonstrated their versatility in a wide range of applications, including chemical separation, gas capture, and storage. In industrial adsorption processes, MOFs are integral to the creation of selective gas adsorption fixed beds. In this context, the assessment of their separation performance under relevant conditions often relies on breakthrough experiments. One aspect frequently overlooked in these experiments is the shaping of MOF powders, which can significantly impact the accuracy of breakthrough results. In this study, we present an approach for immobilizing MOF particles on the surface of glass beads (GBs) utilizing trimethylolpropane triglycidyl ether (TMPTGE) as a binder, leading to the creation of MOF@GB materials. We successfully synthesized five targeted MOF composites, namely, SIFSIX-3-Ni@GB, CALF-20@GB, UiO-66@GB, HKUST-1@GB, and MOF-808@GB, each possessing distinct pore sizes and structural topologies. Characterization studies employing powder X-ray diffraction and adsorption isotherm analyses demonstrated that MOFs@GB retained their crystallinity and 73-90% of the Brunauer-Emmett-Teller area of their parent MOFs. Dynamic breakthrough experiments revealed that, in comparison to their parent MOFs, MOF@GB configurations enhanced the accuracy of breakthrough measurements by mitigating pressure buildup and minimizing reductions in the gas flow rate. This work underscores the significance of meticulous experimental design, specifically in shaping MOF powders, to optimize the efficacy of breakthrough experiments. Our proposed strategy aims to provide a versatile platform for MOF powder processing, thereby facilitating more reliable breakthrough experiments.

20.
J Am Chem Soc ; 146(6): 3943-3954, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295342

RESUMO

CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH─a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA