Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 27(7): 216, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212225

RESUMO

A recently synthesized photoactive donor named fluorinated thienyl-substituted benzodithiophene (DRTB-FT), modified with four novel end capped acceptor molecules, has been investigated through different electrical, quantum, and spectrochemical techniques for its enhanced electro-optical and photovoltaic properties. DRTB-FT was connected to 2-methylenemalononitrile (D-1), 2-methylene-3-oxobutanenitrile (D-2), 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (D-3), and 3-methyl-5methylene-2-thioxothiazolidin-4-one (D-4) as terminal acceptor moieties. The architectural D-1 and D-3 molecules owe reduced optical band gap of 2.45 and 2.28 eV benefited from A-D-A configuration and have broaden maximum absorption band (λmax) at 617 and 602 nm in polar organic solvent (chloroform). Reduced optical band gap sets the ease for enhanced absorption. Reorganization energy of electron (λe) of D-3 molecule (0.00397 eV) was smaller among all which disclosed its greater mobility of conducting electrons (ICT). Larger values of dipole moment (µ) of D-1 (5.939 Debye) and D-3 (3.661 Debye) molecules in comparison to R indicated greater solubilities of the targeted molecules. Among the tailored molecules, D-3 showed the lowest binding energy of 0.25 eV in solvent phase and 0.08 eV in gaseous phase. The voltaic strength of the designed molecules was examined with respect to fullerene derivative (PC61BM) which exposed that D-1 is the best choice for achieving higher PCE. TDM (transition density matrix), DOS (density of states) analysis, and binding energies all were estimated at MPW1PW91/6-31G (d, p) level of DFT (density functional theory). All the architecture molecules show reduced band gap and high electron transfer rate due to the lowest reorganization energy (RE) of electron. The results show that there is greater contribution of acceptor and conjugated donor core towards the total absorption into the visible region of the spectrum. When tailored molecules D-1, D-2, D-3, and D-4 were blended with fullerene derivative polymer (PC61BM), they give high values of voltage at zero current level (Voc) compared to R.

2.
J Mol Graph Model ; 106: 107918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887524

RESUMO

Four new Donor-Acceptor (D-A) type oligothiophenes based structures (C1-C4) were designed by substituting different acceptors moieties around tetrahedral silicon core to simulate their photovoltaic properties. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) quantum analysis were carried out to reconnoiter various parameters of solar cells. A comparative analysis has conducted between designed structures and reference molecule R to conclude our simulated results. Among all the structures, C2 has displayed highest absorption values (380 nm) with red shift and minimum band gap (ΔH-L) of 4.11 eV in dichloromethane at DFT-CAM-B3LYP/6-31G (d,p) using IEFPCM model. The C2 has also shown the lowest values of electron reorganization energy (λe = 0.018eV) and hole reorganization energy (λh = 0.015eV) therefore, could be suggested for use in organic solar cells because of its most noteworthy charge carrier mobilities. Again, C2 has the different trend in TDM graph because the electron density is present in the lower right part of core unit and in the acceptor moiety due to high electron affinities of end capped acceptor having cyanide groups.


Assuntos
Elétrons , Silanos , Teoria da Densidade Funcional , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA