Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Curr Drug Res Rev ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676482

RESUMO

AIM: The aim of this study is to evaluate radioprotective effects of Cerebrolysin (CBL) in rats' brain tissues after local irradiation. BACKGROUND: CBL has demonstrated antioxidant, anti-inflammatory, and tissue repair properties. In this study, the radioprotective effects of CBL in the brain tissues of rats after Irradiation (IR) (50 mg/ kg) were evaluated. OBJECTIVE: The levels of different oxidative stress markers, including malondialdehyde (MDA), nitric oxide (NO), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were examined after treatment with radiation and CBL. METHODS: First, 20 male adult Wistar rats weighing 180-200 g were used. The animals were exposed to a single fraction of 15Gy using a linear accelerator unit at a dose rate of 200 cGy/mine. In this study, to check the amount of oxidative stress following the IR, the level of four markers MDA, NO, GPx, CAT, and SOD were examined and measured using the spectrophotometric method and purchased kits. RESULTS: The results showed that compared to the IR group, the administration of CBL increases the levels of GPX and SOD significantly (p < 0.05). CONCLUSION: Our finding suggests that CBL has radioprotective effects on the brain by enhancing antioxidant defense mechanisms.

2.
Pathol Res Pract ; 257: 155275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643552

RESUMO

Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.


Assuntos
Autofagia , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Autofagia/genética , Autofagia/fisiologia , Animais , Transdução de Sinais/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
3.
Mol Neurobiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520611

RESUMO

Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.

4.
Int J Biol Macromol ; 264(Pt 2): 130683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458289

RESUMO

Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Preparações Farmacêuticas , Nanofibras/química , Materiais Biocompatíveis , Alicerces Teciduais/química , Engenharia Tecidual
5.
Mini Rev Med Chem ; 24(3): 341-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282447

RESUMO

PURPOSE: Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS: In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS: The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION: The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/metabolismo , Estresse Oxidativo , Rim , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Diabetes Mellitus/patologia
6.
Curr Med Chem ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37921180

RESUMO

INTRODUCTION: Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS: According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS: Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION: In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.

7.
Int J Biol Macromol ; 253(Pt 6): 127278, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806412

RESUMO

The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.


Assuntos
Quitosana , Humanos , Quitosana/uso terapêutico , Hidrogéis , Materiais Biocompatíveis/uso terapêutico , Medicina Regenerativa , Engenharia Tecidual , Sistemas de Liberação de Medicamentos
8.
Curr Radiopharm ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37877507

RESUMO

Crocetin is a kind of apocarotenoid carboxylic acid extracted from saffron (Crocus sativus L.), which is effective in upregulating tissue oxygenation. However, crocetin is difficult to solubilize. It was shown that the trans isomer of crocetin is effective in improving oxygen diffusivity, while its cis isomer appears not to be. Hence, the isolated trans isomer of crocetin or trans-sodium crocetinate (TSC) can be used instead of crocetin. It is shown that TSC can upregulate hypoxic tissue oxygenation and be effective in treating some hypoxia-related diseases. Moreover, experimental and clinical studies have reported no adverse effects following TSC treatment, even at high doses. The current study will discuss the potential role of TSC in hemorrhagic shock, ischemia, brain tumor radiotherapy, and others.

9.
Int J Biol Macromol ; 251: 126390, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595701

RESUMO

During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.

10.
Curr Med Chem ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37491852

RESUMO

INTRODUCTION: Although cancer treatment with cisplatin is effective, dose-dependent adverse effects such as ototoxicity occurs often, which limits its clinical use. The use of resveratrol may alleviate the cisplatin-induced ototoxic effects. This study is aimed to review the potential otoprotective effects of resveratrol against cisplatin-induced ototoxicity. METHOD: According to the PRISMA guideline, a systematic search was accomplished to identify all relevant scientific papers on "the role of resveratrol against cisplatin-induced ototoxicity" in different electronic databases up to May 2021. Fifty-five articles were screened based on a pre-defined set of inclusion and exclusion criteria. Eight eligible studies were finally included in the current systematic review. The in-vitro findings revealed that cisplatin administration significantly decreased the HEI-OC1 cell viability compared to the untreated cells; however, resveratrol co-treatment (in a dose-dependent manner) could protect HEI-OC1 cells against cisplatin-induced decrease in cell viability. RESULTS: Furthermore, the in-vivo finding showed a decreased value of DPOAE, and increased values of ABR threshold, ABR-I, ABR-IV, and ABR I-IV interval in cisplatin-treated animals; in contrast, resveratrol co-administration demonstrated an opposite pattern on these parameters. CONCLUSION: Thus, it can be mentioned that resveratrol co-treatment alleviates cisplatin-induced ototoxicity. Mechanically, resveratrol exerts its otoprotective effects through various mechanisms such as anti-oxidant, anti-apoptosis, and anti-inflammatory.

11.
Expert Opin Drug Deliv ; 20(7): 937-954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37294853

RESUMO

INTRODUCTION: During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED: Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION: These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Nanomedicina , Glicóis , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Ácido Láctico/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
12.
Environ Res ; 233: 116432, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331557

RESUMO

Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.


Assuntos
Neoplasias Bucais , Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias Bucais/tratamento farmacológico
13.
Curr Med Chem ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165582

RESUMO

PURPOSE: Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects. METHODS: Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study. RESULTS: The findings of in-vitro experiments showed that cisplatin treatment significantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes. CONCLUSION: The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inflammatory activities, and regulation of cell cycle progression.

14.
Mini Rev Med Chem ; 23(22): 2117-2129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37132107

RESUMO

Neurodegenerative diseases are age-related, multifactorial, and complicated conditions that affect the nervous system. In most cases, these diseases may begin with an accumulation of misfolded proteins rather than decay before they develop clinical symptoms. The progression of these diseases can be influenced by a number of internal and external factors, including oxidative damage, neuro-inflammation, and the accumulation of misfolded amyloid proteins. Astrocytes, with the highest abundance among the cells of the mammalian central nervous system, perform several important activities, such as maintaining brain homeostasis and playing a role in the neurodegenerative condition onset and progress. Therefore, these cells have been considered to be potential targets for managing neurodegeneration. Curcumin, with multiple special properties, has been effectively prescribed to manage various diseases. It has hepato-protective, anti-carcinogenic, cardio-protective, thrombo-suppressive, anti-inflammatory, chemo-therapeutic, anti-arthritic, chemo-preventive, and anti-oxidant activities. In the current review, the effects of curcumin on astrocytes in common neurodegenerative conditions, such as Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, and Parkinson's disease, are discussed. Hence, it can be concluded that astrocytes play a critical role in neurodegenerative diseases, and curcumin is able to directly modulate astrocyte activity in neurodegenerative diseases.

15.
Cancer Cell Int ; 23(1): 88, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165384

RESUMO

PURPOSE: Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS: In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS: According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION: According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.

16.
Curr Med Chem ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37190814

RESUMO

During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.

17.
Curr Pharm Des ; 29(15): 1218-1229, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37138418

RESUMO

BACKGROUND: Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE: In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS: According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS: The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION: According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.


Assuntos
Antineoplásicos , Melatonina , Ototoxicidade , Ratos , Camundongos , Animais , Cisplatino/efeitos adversos , Antineoplásicos/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Ototoxicidade/tratamento farmacológico , Antioxidantes
18.
Front Oncol ; 13: 1173827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205191

RESUMO

Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.

19.
Cancer Cell Int ; 23(1): 101, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221555

RESUMO

Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.

20.
Pathol Res Pract ; 245: 154436, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062208

RESUMO

Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , Oncogenes , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA