Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632747

RESUMO

We discuss exchange scenario thermodynamic uncertainty relations for the work done on a two-qubit entangled nonequilibrium steady state obtained by coupling the two qubits and putting each of them in weak contact with a thermal bath. In this way we investigate the use of entangled nonequilibrium steady states as end points of thermodynamic cycles. In this framework we prove analytically that for a paradigmatic unitary it is possible to construct an exchange scenario thermodynamic uncertainty relation. However, despite holding in many cases, we also show that such a relation ceases to be valid when considering other suitable unitary quenches. Furthermore, this paradigmatic example allows us to shed light on the role of the entanglement between the two qubits for precise work absorption. By considering the projection of the entangled steady state onto the set of separable states, we provide examples where such projection implies an increase of the relative uncertainty, showing the usefulness of entanglement.

2.
Proc Natl Acad Sci U S A ; 113(33): 9177-81, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482118

RESUMO

The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing properties of the iron-based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains a challenge, however, because their associated susceptibilities are not easily accessible by conventional probes. Here, using FeSe as a model system, and symmetry-resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural/nematic transition temperature, [Formula: see text] 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge-induced nematicity in FeSe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA