Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(7): 2486-2494, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362405

RESUMO

Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.

2.
Chem Biodivers ; 20(9): e202300822, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37537138

RESUMO

Curcumin has antioxidant properties resulting from its radical scavenging ability and inhibition of inflammation-associated factors. However, its lack of solubility, instability, and poor bioavailability are impediments to its therapeutic use. As potential alternatives, we synthesized and performed chemical analysis of thirty diarylidene-N-methyl-4-piperidone (DANMP), diheteroarylidene-N-methyl-4-piperidone (DHANMP), and spirobibenzopyran (SBP) derivatives, one of which was also characterized by single crystal X-ray diffraction. All compounds were evaluated for antioxidant activity via 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and for drug-like properties in silico. A subset of five compounds was investigated in terms of aqueous solubilities, which were significantly improved compared to that of curcumin. In vitro assessments of cellular and anti-inflammatory effects were conducted via real time polymerase chain reaction (RT-PCR) and Griess assays to evaluate the presence of inflammatory/activated (M1) markers and production of nitric oxide (NO) species, which are associated with inflammation. The five compounds reduced levels of markers and NO to extents similar to or better than curcumin in inflamed cells, and showed no adverse effects on cell viability. We show that these compounds possess anti-inflammatory properties and may be used as curcumin-substitutes with improved characteristics.


Assuntos
Curcumina , Piperidonas , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Piperidonas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico , Inflamação/tratamento farmacológico
3.
Front Oncol ; 13: 1151384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091169

RESUMO

As part of the first line of defense against pathogens, macrophages possess the ability to differentiate into divergent phenotypes with varying functions. The process by which these cells change their characteristics, commonly referred to as macrophage polarization, allows them to change into broadly pro-inflammatory (M1) or anti-inflammatory (M2) subtypes, and depends on the polarizing stimuli. Deregulation of macrophage phenotypes can result in different pathologies or affect the nature of some diseases, such as cancer and atherosclerosis. Therefore, a better understanding of macrophage phenotype conversion in relevant models is needed to elucidate its potential roles in disease. However, there are few existing probes to track macrophage changes in multicellular environments. In this study, we generated an eGFP reporter cell line based on inducible nitric oxide synthase (iNos) promoter activity in RAW264.7 cells (RAW:iNos-eGFP). iNos is associated with macrophage activation to pro-inflammatory states and decreases in immune-suppressing ones. We validated the fidelity of the reporter for iNos following cytokine-mediated polarization and confirmed that reporter and parental cells behaved similarly. RAW:iNos-eGFP cells were then used to track macrophage responses in different in vitro breast cancer models, and their re-education from anti- to pro-inflammatory phenotypes via a previously reported pyrimido(5,4-b)indole small molecule, PBI1. Using two mouse mammary carcinoma cell lines, 4T1 and EMT6, effects on macrophages were assessed via conditioned media, two-dimensional/monolayer co-culture, and three-dimensional spheroid models. While conditioned media derived from 4T1 or EMT6 cells and monolayer co-cultures of each cancer cell line with RAW:iNos-eGFP cells all resulted in decreased fluorescence, the trends and extents of effects differed. We also observed decreases in iNos-eGFP signal in the macrophages in co-culture assays with 4T1- or EMT6-based spheroids. We then showed that iNos production is enhanced in these cancer models using PBI1, tracking increased fluorescence. Collectively, this work demonstrates that this reporter-based approach provides a facile means to study macrophage responses in complex, multicomponent environments. Beyond the initial studies presented here, this platform can be used with a variety of in vitro models and extended to in vivo applications with intravital imaging.

4.
ACS Nano ; 17(5): 4315-4326, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802503

RESUMO

Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.


Assuntos
Pneumonia , Polímeros , Animais , Camundongos , RNA Interferente Pequeno , Polímeros/metabolismo , RNA de Cadeia Dupla/metabolismo , Endossomos/metabolismo , Pneumonia/terapia , Pneumonia/metabolismo
5.
JACS Au ; 2(7): 1679-1685, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911454

RESUMO

Macrophages migrate to tumor sites by following chemoattractant gradients secreted by tumor cells, providing a truly active targeting strategy for cancer therapy. However, macrophage-based delivery faces challenges of cargo loading, control of release, and effects of the payload on the macrophage vehicle. We present a strategy that employs bioorthogonal "nanozymes" featuring transition metal catalysts (TMCs) to provide intracellular "factories" for the conversion of prodyes and prodrugs into imaging agents and chemotherapeutics. These nanozymes solubilize and stabilize the TMCs by embedding them into self-assembled monolayer coating gold nanoparticles. Nanozymes delivered into macrophages were intracellularly localized and retained activity even after prolonged (72 h) incubation. Significantly, nanozyme-loaded macrophages maintained their inherent migratory ability toward tumor cell chemoattractants, efficiently killing cancer cells in cocultures. This work establishes the potential of nanozyme-loaded macrophages for tumor site activation of prodrugs, providing readily tunable dosages and delivery rates while minimizing off-target toxicity of chemotherapeutics.

6.
Integr Biol (Camb) ; 14(3): 62-75, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652485

RESUMO

Macrophages are white blood cells that play disparate roles in homeostasis and immune responses. They can reprogram their phenotypes to pro-inflammatory (M1) or anti-inflammatory (M2) states in response to their environment. About 8-15% of the macrophage transcriptome has circadian oscillations, including genes closely related to their functioning. As circadian rhythms are associated with cellular phenotypes, we hypothesized that polarization of macrophages to opposing subtypes might differently affect their circadian rhythms. We tracked circadian rhythms in RAW 264.7 macrophages using luminescent reporters. Cells were stably transfected with Bmal1:luc and Per2:luc reporters, representing positive and negative components of the molecular clock. Strength of rhythmicity, periods and amplitudes of time series were assessed using multiple approaches. M1 polarization decreased amplitudes and rhythmicities of Bmal1:luc and Per2:luc, but did not significantly affect periods, while M2 polarization increased periods but caused no substantial alterations to amplitudes or rhythmicity. As macrophage phenotypes are also altered in the presence of cancer cells, we tested circadian effects of conditioned media from mouse breast cancer cells. Media from highly aggressive 4T1 cells caused loss of rhythmicity, while media from less aggressive EMT6 cells yielded no changes. As macrophages play roles in tumors, and oncogenic features are associated with circadian rhythms, we tested whether conditioned media from macrophages could alter circadian rhythms of cancer cells. Conditioned media from RAW 264.7 cells resulted in lower rhythmicities and periods, but higher amplitudes in human osteosarcoma, U2OS-Per2:luc cells. We show that phenotypic changes in macrophages result in altered circadian characteristics and suggest that there is an association between circadian rhythms and macrophage polarization state. Additionally, our data demonstrate that macrophages treated with breast cancer-conditioned media have circadian phenotypes similar to those of the M1 subtype, and cancer cells treated with macrophage-conditioned media have circadian alterations, providing insight to another level of cross-talk between macrophages and cancer.


Assuntos
Ritmo Circadiano , Macrófagos , Animais , Neoplasias da Mama/patologia , Meios de Cultivo Condicionados , Feminino , Macrófagos/citologia , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Células RAW 264.7
7.
Mater Horiz ; 9(5): 1489-1494, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35293903

RESUMO

Intracellular bacterial infections are difficult to treat, and in the case of Salmonella and related infections, can be life threatening. Antibiotic treatments for intracellular infections face challenges including cell penetration and intracellular degradation that both reduce antibiotic efficacy. Even when treatable, the increased dose of antibiotics required to counter infections can strongly impact the microbiome, compromising the native roles of beneficial non-pathogenic species. Bioorthogonal catalysis provides a new tool to combat intracellular infections. Catalysts embedded in the monolayers of gold nanoparticles (nanozymes) bioorthogonally convert inert antibiotic prodrugs (pro-antibiotics) into active species within resident macrophages. Targeted nanozyme delivery to macrophages was achieved through mannose conjugation and subsequent uptake VIA the mannose receptor (CD206). These nanozymes efficiently converted pro-ciprofloxacin to ciprofloxacin inside the macrophages, selectively killing pathogenic Salmonella enterica subsp. enterica serovar Typhimurium relative to non-pathogenic Lactobacillus sp. in a transwell co-culture model. Overall, this targeted bioorthogonal nanozyme strategy presents an effective treatment for intracellular infections, including typhoid and tuberculosis.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/uso terapêutico , Salmonella typhimurium
8.
Clocks Sleep ; 3(4): 598-608, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34842634

RESUMO

Circadian rhythm disruption can elicit the development of various diseases, including breast cancer. While studies have used cell lines to study correlations between altered circadian rhythms and cancer, these models have different genetic backgrounds and do not mirror the changes that occur with disease development. Isogenic cell models can recapitulate changes across cancer progression. Hence, in this study, a patient-derived breast cancer model, the 21T series, was used to evaluate changes to circadian oscillations of core clock protein transcription as cells progress from normal to malignant states. Three cell lines were used: H16N2 (normal breast epithelium), 21PT (atypical ductal hyperplasia), and 21MT-1 (invasive metastatic carcinoma). The cancerous cells are both HER2+. We assessed the transcriptional profiles of two core clock proteins, BMAL1 and PER2, which represent a positive and negative component of the molecular oscillator. In the normal H16N2 cells, both genes possessed rhythmic mRNA oscillations with close to standard periods and phases. However, in the cancerous cells, consistent changes were observed: both genes had periods that deviated farther from normal and did not have an anti-phase relationship. In the future, mechanistic studies should be undertaken to determine the oncogenic changes responsible for the circadian alterations found.

9.
Nanoscale ; 13(29): 12623-12633, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34264256

RESUMO

Nanomaterial-based platforms are promising vehicles for the controlled delivery of therapeutics. For these systems to be both efficacious and safe, it is essential to understand where the carriers accumulate and to reveal the site-specific biochemical effects they produce in vivo. Here, a dual-mode mass spectrometry imaging (MSI) method is used to evaluate the distributions and biochemical effects of anti-TNF-α nanoparticle stabilized capsules (NPSCs) in mice. It is found that most of the anticipated biochemical changes occur in sub-organ regions that are separate from where the nanomaterials accumulate. In particular, TNF-α-specific lipid biomarker levels change in immune cell-rich regions of organs, while the NPSCs accumulate in spatially isolated filtration regions. Biochemical changes that are associated with the nanomaterials themselves are also observed, demonstrating the power of matrix-assisted laser desorption/ionization (MALDI) MSI to reveal markers indicating possible off-target effects of the delivery agent. This comprehensive assessment using MSI provides spatial context of nanomaterial distributions and efficacy that cannot be easily achieved with other imaging methods, demonstrating the power of MSI to evaluate both expected and unexpected outcomes associated with complex therapeutic delivery systems.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Cápsulas , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inibidores do Fator de Necrose Tumoral
10.
PLoS One ; 15(7): e0236315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706791

RESUMO

The natural product nobiletin is a small molecule, widely studied with regard to its therapeutic effects, including in cancer cell lines and tumors. Recently, nobiletin has also been shown to affect circadian rhythms via their enhancement, resulting in protection against metabolic syndrome. We hypothesized that nobiletin's anti-oncogenic effects, such as prevention of cell migration and formation of anchorage independent colonies, are correspondingly accompanied by modulation of circadian rhythms. Concurrently, we wished to determine whether the circadian and anti-oncogenic effects of nobiletin differed across cancer cell lines. In this study, we assessed nobiletin's circadian and therapeutic characteristics to ascertain whether these effects depend on cell line, which here also varied in terms of baseline circadian rhythmicity. Three cell culture models where nobiletin's effects on cell proliferation and migration have been studied previously were evaluated: U2OS (bone osteosarcoma), which possesses robust circadian rhythms; MCF7 (breast adenocarcinoma), which has weak circadian rhythms; and MDA-MB-231 (breast adenocarcinoma), which is arrhythmic. We found that circadian, migration, and proliferative effects following nobiletin treatment were subtle in the U2OS and MCF7 cells. On the other hand, changes were clear in MDA-MB-231s, where nobiletin rescued rhythmicity and substantially reduced oncogenic features, specifically two-dimensional cell motility and anchorage-independent growth. Based on these results and those previously described, we posit that the effects of nobiletin are indeed cell-type dependent, and that a positive correlation may exist between nobiletin's circadian and therapeutic effects.


Assuntos
Antineoplásicos Fitogênicos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Flavonas , Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico
11.
Integr Cancer Ther ; 19: 1534735420924094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32493076

RESUMO

Circadian rhythms are essential for controlling the cell cycle, cellular proliferation, and apoptosis, and hence are tightly linked to cell fate. Several recent studies have used small molecules to affect circadian oscillations; however, their concomitant cellular effects were not assessed, and they have not been compared under similar experimental conditions. In this work, we use five molecules, grouped into direct versus indirect effectors of the circadian clock, to modulate periods in a human osteosarcoma cell line (U2OS) and determine their influences on cellular behaviors, including motility and colony formation. Luciferase reporters, whose expression was driven via Bmal1- or Per2-promoters, were used to facilitate the visualization and quantitative analysis of circadian oscillations. We show that all molecules increase or decrease the circadian periods of Bmal1 and Per2 in a dose-dependent manner, but period length does not correlate with the extent of cell migration or proliferation. Nonetheless, molecules that affected circadian oscillations to a greater degree resulted in substantial influence on cellular behaviors (ie, motility and colony formation), which may also be attributable to noncircadian targets. Furthermore, we find that the ability and extent to which the molecules are able to affect oscillations is independent of whether they are direct or indirect modulators. Because of the numerous connections and feedback between the circadian clock and other pathways, it is important to consider the effects of both in assessing these and other compounds.


Assuntos
Relógios Circadianos , Diferenciação Celular , Proliferação de Células , Ritmo Circadiano , Humanos , Regiões Promotoras Genéticas
12.
Methods Enzymol ; 639: 115-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475398

RESUMO

Circadian rhythms are critical regulators of many physiological and behavioral functions. The use and abilities of small molecules to affect oscillations have recently received significant attention. These manipulations can be reversible and tunable, and have been used to study various biological mechanisms and molecular properties. Here, we outline procedures for assessment of cellular circadian changes following treatment with small molecules, using luminescent reporters. We describe reporter generation, luminometry experiments, and data analysis. Protocols for studies of accompanying effects on cells, including motility, viability, and anchorage-independent proliferation assays are also presented. As examples, we use indirubin-3'-oxime and two derivatives, 5-iodo-indirubin-3'-oxime and 5-sulfonic acid-indirubin-3'-oxime. In this case study, we analyze effects of these compounds on Bmal1 and Per2 (positive and negative core circadian elements) oscillations and provide step-by-step protocols for data analysis, including removal of trends from raw data, period estimations, and statistical analysis. The reader is provided with detailed protocols, and guidance regarding selection of and alternative approaches.


Assuntos
Ritmo Circadiano , Linhagem Celular Tumoral , Indóis
13.
Chem Sci ; 11(31): 8231-8239, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34123093

RESUMO

Macrophages are plastic cells of the innate immune system that perform a wide range of immune- and homeostasis-related functions. Due to their plasticity, macrophages can polarize into a spectrum of activated phenotypes. Rapid identification of macrophage polarization states provides valuable information for drug discovery, toxicological screening, and immunotherapy evaluation. The complexity associated with macrophage activation limits the ability of current biomarker-based methods to rapidly identify unique activation states. In this study, we demonstrate the ability of a 2-element sensor array that provides an information-rich 5-channel output to successfully determine macrophage polarization phenotypes in a matter of minutes. The simple and robust sensor generates a high dimensional data array which enables accurate macrophage evaluations in standard cell lines and primary cells after cytokine treatment, as well as following exposure to a model disease environment.

14.
Anal Chem ; 92(2): 2011-2018, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31825199

RESUMO

Nanomaterial-based drug delivery vehicles are able to deliver therapeutics in a controlled, targeted manner. Currently, however, there are limited analytical methods that can detect both nanomaterial distributions and their biochemical effects concurrently. In this study, we demonstrate that matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) can be used together to obtain nanomaterial distributions and biochemical consequences. These studies employ nanoparticle-stabilized capsules (NPSCs) loaded with siRNA as a testbed. MALDI-MSI experiments on spleen tissues from intravenously injected mice indicate that NPSCs loaded with anti-TNF-α siRNA cause changes to the lipid composition in white pulp regions of the spleen, as anticipated, based on pathways known to be affected by TNF-α, whereas NPSCs loaded with scrambled siRNA do not cause the predicted changes. Interestingly, LA-ICP-MSI experiments reveal that the NPSCs primarily localize in the red pulp, suggesting that the observed changes in lipid composition are due to diffusive rather than localized effects on TNF-α production. Such information is only accessible by combining data from the two modalities, which we accomplish by using the heme signals from MALDI-MSI and iron signals from LA-ICP-MSI to overlay the images. Several unexpected changes in lipid composition also occur in regions where the NPSCs are found, suggesting that the NPSCs themselves can influence tissue biochemistry as well.


Assuntos
Cápsulas/análise , Nanopartículas/análise , Baço/química , Animais , Cápsulas/administração & dosagem , Cápsulas/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Injeções Intravenosas , Espectrometria de Massas , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Baço/metabolismo , Distribuição Tecidual
15.
Pharmacol Res ; 148: 104452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31518642

RESUMO

Immunotherapy has become a promising new approach for cancer treatment due to the immune system's ability to remove tumors in a safe and specific manner. Many tumors express anti-inflammatory factors that deactivate the local immune response or recruit peripheral macrophages into pro-tumor roles. Because of this, effective and specific ways of activating macrophages into anti-tumor phenotypes is highly desirable for immunotherapy purposes. Here, the use of a small molecule TLR agonist as a macrophage activator for anti-cancer therapy is reported. This compound, referred to as PBI1, demonstrated unique activation characteristics and expression patterns compared to treatment with LPS, through activation of TLR4. Furthermore, PBI1 treatment resulted in anti-tumor immune behavior, enhancing macrophage phagocytic efficiency five-fold versus non-treated macrophages. Additive effects were observed via use of a complementary strategy (anti-CD47 antibody), resulting in ∼10-fold enhancement of phagocytosis, suggesting this small molecule approach could be used in conjunction with other therapeutics.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Antígeno CD47/metabolismo , Linhagem Celular , Imunoterapia/métodos , Macrófagos/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Cell Cycle ; 18(19): 2447-2453, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357909

RESUMO

Epidemiological studies have shown that humans with altered circadian rhythms have higher cancer incidence, with breast cancer being one of the most cited examples. To uncover how circadian disruptions may be correlated with breast cancer and its development, prior studies have assessed the expression of BMAL1 and PER2 core clock genes via RT-qPCR and western blot analyses. These and our own low-resolution data show that BMAL1 and PER2 expression are suppressed and arrhythmic. We hypothesized that oscillations persist in breast cancer cells, but due to limitations of protocols utilized, cannot be observed. This is especially true where dynamic changes may be subtle. In the present work, we generated luciferase reporter cell lines representing high- and low-grade breast cancers to assess circadian rhythms. We tracked signals for BMAL1 and PER2 to determine whether and to what extent oscillations exist and provide initial correlations of circadian rhythm alterations with breast cancer aggression. In contrast to previous studies, where no oscillations were apparent in any breast cancer cell line, our luminometry data reveal that circadian oscillations of BMAL1 and PER2 in fact exist in the low-grade, luminal A MCF7 cells but are not present in high-grade, basal MDA-MB-231 cells. To our knowledge, this is the first evidence of core circadian clock oscillations in breast cancer cells. This work also suggests that circadian rhythms are further disrupted in more aggressive/high tumor grades of breast cancer, and that use of real time luminometry to study additional representatives of breast and other cancer subtypes is merited.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Neoplasias da Mama/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Gradação de Tumores , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Circadianas Period/genética
17.
Integr Cancer Ther ; 18: 1534735419836494, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943793

RESUMO

From an epidemiological standpoint, disruptions to circadian rhythms have been shown to contribute to the development of various disease pathologies, including breast cancer. However, it is unclear how altered circadian rhythms are related to malignant transformations at the molecular level. In this article, a series of isogenic breast cancer cells representing disease progression was used to investigate the expression patterns of core circadian clock proteins BMAL1 and PER2. Our model is indicative of 4 stages of breast cancer and includes the following cells: MCF10A (non-malignant), MCF10AT.Cl2 (pre-malignant), MCF10Ca1h (well-differentiated, malignant), and MCF10Ca1a (poorly differentiated, malignant). While studies of circadian rhythms in cancer typically use low-resolution reverse transcription polymerase chain reaction assays, we also employed luciferase reporters BMAL1:Luc and PER2:Luc in real-time luminometry experiments. We found that across all 4 cancer stages, PER2 showed relatively stable oscillations compared with BMAL1. Period estimation using both wavelet-based and damped-sine-fitting methods showed that the periods are distributed over a wide circadian range and there is no clear progression in mean period as cancer severity progresses. Additionally, we used the K-nearest neighbors algorithm to classify the recordings according to cancer line, and found that cancer stages were largely differentiated from one another. Taken together, our data support that there are circadian discrepancies between normal and malignant cells, but it is difficult and insufficient to singularly use period evaluations to differentiate them. Future studies should employ other progressive disease models to determine whether these findings are representative across cancer types or are specific to this series.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Circadianas Period/metabolismo , Mama/metabolismo , Mama/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Progressão da Doença , Feminino , Células HEK293 , Humanos
19.
J Control Release ; 283: 235-240, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883695

RESUMO

The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system.


Assuntos
Anti-Inflamatórios/administração & dosagem , Nanocápsulas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Animais , Citosol , Feminino , Inativação Gênica , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
20.
ACS Chem Biol ; 13(8): 2339-2346, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29856604

RESUMO

The immune system has been found to play key roles in cancer development and progression. Macrophages are typically considered to be pro-inflammatory cells but can also facilitate pro-oncogenic activities via associations with tumors and metastases. The study of macrophages and their interactions within the context of cancer microenvironments is stymied by the lack of a system to track them. We present a cell-based strategy for studying cancer-immune cell interactions by chemically modifying the surfaces of macrophages with fluorophores. Two widely used methods are employed, affecting cell surface proteins and glycans via NHS-ester and Staudinger ligation reactions, respectively. We show that these modifications do not interfere with macrophage responses to chemoattractants and that interactions with cancer cells can be readily monitored. This work describes the development of macrophage-based imaging agents for tumor detection and assessment of interactions between immune cells and cancers.


Assuntos
Neoplasias da Mama/imunologia , Macrófagos/imunologia , Imagem Óptica/métodos , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Comunicação Celular , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Quimiotaxia , Feminino , Corantes Fluorescentes/análise , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA