Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298163

RESUMO

Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.


Assuntos
Manganês , Óxidos , Manganês/química , Óxidos/química , Minerais/química , Compostos de Manganês/química , Oxirredução , Meio Ambiente
2.
Int J Biol Macromol ; 242(Pt 1): 124599, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116835

RESUMO

Two different biocleaning techniques for stamp removal from different paper samples (handmade and machine-made) were investigated. Cellulose is the main component of handmade paper, while higher concentration of lignin is present in machine-made paper. Biocleaning methods included the direct application on paper surfaces of the extracellular enzymatic mixture (EEM) extracted from the yeast Sporidiobolus metaroseus and the recombinant protein CthediskatG of Chaetomium thermophilum var. dissitum. The produced microbial enzymes (EEM or CthediskatG) were also combined with agarose hydrogels. The effectiveness of the cleaning ability of the individual methods was determined using different spectrophotometer measurements based on colorimetric analysis and by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Some tested samples were also subjected to microstructural and chemical analysis using Scanning Electron Microscope-Energy-Dispersive X-ray spectroscopy (SEM-EDX). The analysis showed that the EEM-based approaches were the most suitable, mainly they are less time-consuming and easy to produce, and moreover slight differences were displayed between EEM and CthediskatG during the removal of the stamp by hydrogel-enzyme approaches. Both EEM applications (direct and hydrogel) speed up the stamp removal process from real paper samples. However, for the complete elimination of the stamp smears a quick N,N-dimethylformamide post-treatment is advised too.


Assuntos
Celulose , Lignina , Celulose/química , Lignina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrometria por Raios X , Hidrogéis
3.
Int J Biol Macromol ; 241: 124456, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085082

RESUMO

Over the centuries, various types of paper have been produced, each characterized by a different ratio of natural macromolecules, mainly lignin and cellulose. Handmade paper has a higher content of cellulose with respect to the early machine-made paper, where lignin is the other important component. Microorganisms are able to colonize and deteriorate both types. They can release on their surfaces pigments and colorants which produced anesthetic stains. To better understand the microbiota colonizing these stains, 17 samples were analyzed, from both handmade and machine-made paper surfaces, as well as library and archive environments. Combination of microbiological and high-throughput sequencing (HTS) approaches were applied. The culture-dependent methodology comprised: isolation, DNA identification, hydrolytic and paper staining assays. The HTS was performed by MinION platform and for the mycobiome a more suitable bioinformatics analysis pipeline, MetONTIIME based on QIIME2 framework, was applied. The paper model staining assay permitted the direct recognition of colorizing isolates which in combination with sequencing data evidenced a complex microbial community able to stain the two types of paper. Staining abilities were confirmed by frequently isolated and detected fungi as well as newly discovered ones Roussoella euonymi and Achaetomium. We have also evidenced the staining ability of several bacteria.


Assuntos
Celulose , Microbiota , Lignina , Corantes , Coloração e Rotulagem , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA