Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 16(2): 022004, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594992

RESUMO

Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of ß-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Fibroínas/química , Hidrogéis/química , Seda/metabolismo , Engenharia Tecidual/métodos , Animais , Bombyx , Dióxido de Carbono/química , Fenômenos Químicos , Cristalografia por Raios X , Glutaral/química , Humanos , Concentração de Íons de Hidrogênio , Iridoides , Teste de Materiais , Modelos Teóricos , Osmose , Polímeros/química , Estresse Mecânico , Tensoativos , Temperatura
2.
Int J Mol Sci ; 16(8): 17289-302, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26230687

RESUMO

In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s) of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.


Assuntos
Proteínas Imobilizadas/química , Lactoglobulinas/química , Nanopartículas/química , Absorção Fisico-Química , Calorimetria , Porosidade , Conformação Proteica , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA