Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514204

RESUMO

Brassica species show varying levels of resistance to salt stress. To understand the genetics underlying these differential stress tolerance patterns in Brassicas, we exposed two widely cultivated amphidiploid Brassica species having different genomes, Brassica juncea (AABB, n = 18) and Brassica napus (AACC, n = 19), to elevated levels of NaCl concentration (300 mM, half the salinity of seawater). B. juncea produced more biomass, an increased chlorophyll content, and fewer accumulated sodium (Na+) and chloride (Cl-) ions in its photosynthesizing tissues. Chlorophyll fluorescence assays revealed that the reaction centers of PSII of B. juncea were more photoprotected and hence more active than those of B. napus under NaCl stress, which, in turn, resulted in a better PSII quantum efficiency, better utilization of photochemical energy with significantly reduced energy loss, and higher electron transport rates, even under stressful conditions. The expression of key genes responsible for salt tolerance (NHX1 and AVP1, which are nuclear-encoded) and photosynthesis (psbA, psaA, petB, and rbcL, which are chloroplast-encoded) were monitored for their genetic differences underlying stress tolerance. Under NaCl stress, the expression of NHX1, D1, and Rubisco increased several folds in B. juncea plants compared to B. napus, highlighting differences in genetics between these two Brassicas. The higher photosynthetic potential under stress suggests that B. juncea is a promising candidate for genetic modifications and its cultivation on marginal lands.

2.
Plants (Basel) ; 8(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795525

RESUMO

In vitro regeneration is a pre-requisite for developing transgenic plants through tissue culture-based genetic engineering approaches. Huge variations among different genotypes of the genus Brassica necessitate the identification of a set of regeneration conditions for a genotype, which can be reliably used in transformation experiments. In this study, we evaluated the morphogenesis potential of four commercial cultivars (Faisal canola, Punjab canola, Aari canola, Nifa Gold) and one model, Westar, from four different explants namely cotyledons, hypocotyls, petioles and roots on three different Brassica regeneration protocols, BRP-I, -II and -III. The regeneration efficiency was observed in the range of 6-73%, 4-79.3%, 0-50.6%, and 0-42.6% from cotyledons, petioles, hypocotyls and roots, respectively, whereas, the regeneration response in terms of average shoots per explant was found to be 0.76-10.9, 0.2-3.2, 0-3.4 and 0-2.7 from these explants. Of the commercial varieties tested, almost all varieties showed poorer regeneration than Westar except Aari canola. In comparison to Westar, its regeneration frequency from cotyledons was up to 7.5-fold higher on BRP-I, while it produced up to 21.9-fold more shoots per explant. Our data show that the explant has strong influence on the regeneration response, ranging from 24% to 92%. While the growth of commercial cultivars was least affected by the regeneration conditions provided, the effect on Westar was twice that of the commercial cultivars. After determining the optimal explant type and regeneration conditions, we also determined the minimum kanamycin concentration levels required to selectively inhibit the growth of untransformed cells for these cultivars. Regenerated shoots of Aari canola could be successfully grown to maturity within 16-18 weeks, with no altered phenotype noted and normal seed yields obtained. Therefore, the commercial variety, Aari canola, could be a good candidate for future genetic transformation studies.

3.
South Asian J Cancer ; 7(3): 163-166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112330

RESUMO

BACKGROUND AND PURPOSE: To examine the feasibility of improving breast-conserving radiotherapy with simultaneous integrated boost (SIB) and analyzing the efficiency of forward versus inverse intensity-modulated radiotherapy (IMRT) techniques in providing the same. MATERIALS AND METHODS: Three-dimensional conformal radiotherapy (3DCRT) field-in-field (FIF) plans with simultaneous and sequential boost and IMRT SIB plans were generated for the datasets of 20 patients who had undergone breast-conserving surgery. The 3 plans were compared dosimetrically for efficiency in terms of planning target volume (PTV) coverage (PTV 95%), homogeneity and conformity, dose delivered to ipsilateral/contralateral lungs (I/L: V10, V20, C/L: Vmean, V5), heart and contralateral breast (Vmean, V30 for heart and Vmean, V1, V5 for C/L breast). RESULTS: The FIF 3DCRT plan with SIB (PLAN B) was more homogeneous than the classical technique with sequential boost (PLAN A). There were less hot spots in terms of Dmax (63.7 ± 1.3) versus Dmax (68.9 ± 1), P < 0.001 and boost V107%, B (0.3 ± 0.7) versus A (3.5 ± 5.99), P = 0.001. The IMRT SIB (PLAN C) did not provide any significant dosimetric advantage over the 3DCRT SIB technique. IMRT SIB plan C was associated with increased dose to contralateral lung in-terms of V5 (10.35 +/- 18.23) vs. (1.13 +/- 4.24), P = 0.04 and Vmean (2.12 ± 2.18) versus Vmean (0.595 ± 0.89), P = 0.008. There was 3-fold greater exposure in terms of Monitor Unit (MU) (1024.9 ± 298.32 versus 281.05 ± 20.23, P < 0.001) and treatment delivery time. CONCLUSIONS: FIF 3DCRT SIB provides a dosimetrically acceptable and technically feasible alternative to the classical 3DCRT plan with sequential boost for breast-conserving radiotherapy. It reduces treatment time by 2 weeks. IMRT SIB does not appear to have any dosimetric advantage; it is associated with significantly higher doses to contralateral lung and heart and radiation exposure in terms of MU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA