Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Noncoding RNA Res ; 9(2): 359-366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511066

RESUMO

In 2021, David Julius and Ardem Patapoutian received Nobel Prize in Physiology or Medicine for their ground-breaking discoveries in the functional characterization of receptors for temperature and touch. Transient receptor potential (TRP) channels have captivated tremendous appreciation as promising drug targets over the past few years because of central involvement in different cancers. Based on the insights gleaned from decades of high-quality research, basic and clinical scientists have unveiled how Transient receptor potential channels regulated cancer onset and progression. Pioneering studies have sparked renewed interest and researchers have started to scratch the surface of mechanistic role of these channels in wide variety of cancers. In this review we have attempted to provide a summary of most recent updates and advancements made in the biology of these channels in context of cancers. We have partitioned this review into different subsections on the basis of emerging evidence about characteristically distinct role of TRPV (TRPV1, TRPV5), TRPM (TRPM3, TRPM7) and TRPC in cancers. Regulation of TRP channels by non-coding RNAs is also a very exciting area of research which will be helpful in developing a sharper understanding of the multi-step aspects of cancers.

2.
Cancer Drug Resist ; 7: 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434765

RESUMO

Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.

3.
Curr Med Chem ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347787

RESUMO

Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.

4.
Environ Toxicol ; 39(1): 299-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705323

RESUMO

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.


Assuntos
Apoptose , Neoplasias Bucais , Humanos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Bucais/metabolismo
5.
Cancers (Basel) ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38001603

RESUMO

In this Special Issue entitled "Cancer Smart Nanomedicine", we have gathered high-quality contributions related to the fascinating field of nanomedicine [...].

6.
Cells ; 12(19)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830596

RESUMO

The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.


Assuntos
Neoplasias , Receptores de Hidrocarboneto Arílico , Animais , Carcinogênese/genética , Epigênese Genética , Ligantes , Neoplasias/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação , Humanos
7.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569824

RESUMO

Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.


Assuntos
Exossomos , MicroRNAs , MicroRNAs/genética , Exossomos/genética
8.
Cancers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568787

RESUMO

Discoveries related to an intriguing feature of ubiquitination have prompted a detailed analysis of the ubiquitination patterns in malignant cells. How the "ubiquitinome" is reshaped during multistage carcinogenesis has garnered significant attention. Seminal studies related to the structural and functional characterization of NEDD4 (Neuronal precursor cell-expressed developmentally downregulated-4) have consolidated our understanding at a new level of maturity. Additionally, regulatory roles of non-coding RNAs have further complicated the complex interplay between non-coding RNAs and the members of NEDD4 family. These mechanisms range from the miRNA-mediated targeting of NEDD4 family members to the regulation of transcriptional factors for a broader range of non-coding RNAs. Additionally, the NEDD4-mediated degradation of different proteins is modulated by lncRNAs and circRNAs. The miRNA-mediated targeting of NEDD4 family members is also regulated by circRNAs. Tremendous advancements have been made in the identification of different substrates of NEDD4 family and in the comprehensive analysis of the molecular mechanisms by which various members of NEDD4 family catalyze the ubiquitination of substrates. In this review, we have attempted to summarize the multifunctional roles of the NEDD4 family in cancer biology, and how different non-coding RNAs modulate these NEDD4 family members in the regulation of cancer. Future molecular studies should focus on the investigation of a broader drug design space and expand the scope of accessible targets for the inhibition/prevention of metastasis.

9.
Med Oncol ; 40(8): 236, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432489

RESUMO

Bladder cancer is a therapeutically challenging disease and wealth of knowledge has enabled researchers to develop a clear understanding of mechanisms which underlie carcinogenesis and metastasis. Excitingly, research over decades has unveiled wide-ranging mechanisms which serve as central engine in progression of bladder cancer. Loss of apoptosis, drug resistance, and pro-survival signaling are some of the highly studied cellular mechanisms. Therefore, restoration of apoptosis in resistant cancers is a valuable and attractive strategy. Discovery of TRAIL-mediated signaling cascade is an intriguing facet of molecular oncology. In this review, we have provided an overview of the translational and foundational advancements in dissecting the genomic and proteomic cartography of TRAIL signaling exclusively in the context of bladder cancer. We have also summarized how different natural products sensitized drug-resistant bladder cancer cells to TRAIL-mediated apoptosis. Interestingly, different death receptors that activate agonistic antibodies have been tested in various phases of clinical trials against different cancers. Certain clues of scientific evidence have provided encouraging results about efficacy of these agonistic antibodies (lexatumumab and mapatumumab) against bladder cancer cell lines. Therefore, multipronged approaches consisting of natural products, chemotherapeutics, and agonistic antibodies will realistically and mechanistically provide proof-of-concept for the translational potential of these combinatorial strategies in well-designed clinical trials.


Assuntos
Produtos Biológicos , Neoplasias da Bexiga Urinária , Humanos , Proteômica , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológico , Oncologia
10.
Cancers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190145

RESUMO

Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.

11.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240198

RESUMO

Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.


Assuntos
Neoplasias da Mama , Endorribonucleases , Humanos , Feminino , Endorribonucleases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
12.
Chem Biol Drug Des ; 102(1): 65-75, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37118982

RESUMO

MYC amplification and overexpression in breast cancer occur 16% and 22%, respectively, and MYC has a linchpin role in breast carcinogenesis. Emerging evidence has started to shed light on central role of MYC in breast cancer progression. On the contrary, tumor-derived exosomes and their cargo molecules are required for the modulation of the tumor environment and to promote carcinogenesis. Still, how MYC regulates tumor-derived exosomes is still a matter of investigation in the context of breast cancer. Here, we investigated for the first time how MYC affects the biological functions of normal breast cells cocultured with exosomes derived from MYC-expression manipulated breast cancer cells. Accordingly, exosomes were isolated from MCF-7 and MDA-MB-231 cells that MYC expression was manipulated through siRNAs or lentiviral vectors by using exosome isolation reagent. Then, normal breast epithelial MCF-10A cells were treated with breast cancer cell-derived exosomes. The cellular activity of MCF-10A was investigated by cell growth assay, wound healing assay, and transwell assay. Our results suggested that MCF-10A cells treated with exosomes derived from MYC-overexpressing breast cancer cells demonstrated higher proliferation and migration capability compared with nontreated cells. Likewise, MCF-10A cells treated with exosomes derived from MYC-silenced cancer cells did not show high proliferation and invasive capacity. Overall, MYC can drive the functions of exosomes secreted from breast cancer cells. This may allow exploring a new mechanism how tumor cells regulate cancer progression and modulate tumor environment. The present study clears the way for further researches as in vivo studies and multi-omics that clarify exosomal content in an MYC-dependent manner.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Exossomos/metabolismo , Exossomos/patologia , Células MCF-7 , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc
13.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903477

RESUMO

The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/ß-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.


Assuntos
Bufanolídeos , beta Catenina , Animais , beta Catenina/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Bufanolídeos/farmacologia , Carcinogênese , Apoptose , Microambiente Tumoral
14.
Med Oncol ; 40(5): 131, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971893

RESUMO

Rutin is one of the flavonoids found in fruits and vegetables. The PI3K/AKT/mTOR signaling pathway is critical for the life cycle at the cellular level. In current study, we purposed to demonstrate the antitumoral effect of rutin at different doses through the mTOR-signaling pathway and argyrophilic nucleolar regulatory region. EAC cells were injected subcutaneously into the experimental groups. 25 and 50 mg/kg Rutin were injected intraperitoneally to the animals with solid tumors for 14 days. Immunohistochemical, Real-time PCR and AgNOR analyzes were actualized on the taken tumors. When the rutin given groups and the tumor group were compared, the tumor size increase was detected to be statistically significant (p < 0.05). In immunohistochemical analysis, a significant decrease was encountered in the AKT, mTOR, PI3K and F8 expressions especially in the groups administered 25 mg Rutin, in comparison with the control group (p < 0.05). AgNOR area/nuclear area (TAA/NA) and average AgNOR number were determineted, and statistically important differences were detected between the groups in terms of TAA/NA ratio (p < 0.05). There were significant statistical differences between the mRNA quantity of the PI3K, AKT1 and mTOR genes (p < 0.05). In the in vitro study, cell apoptosis was evaluated with different doses of annexin V and it was determined that a dose of 10 µg/mL Rutin induced apoptosis (p < 0.05). In our study, it was demonstrated in vivo and in vitro that Rutin has an anti-tumor effect on the development of solid tumors formed by both EAC cells.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico , Rutina/farmacologia , Apoptose , Proliferação de Células
15.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36612314

RESUMO

Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.

16.
In Vivo ; 37(1): 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593023

RESUMO

Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Epigênese Genética , MicroRNAs/genética , Metilação de DNA/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica
17.
J Pharmacol Exp Ther ; 384(1): 20-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36507844

RESUMO

The discovery of ferroptosis has paradigmatically shifted our about different types of cell death. The wealth of information gathered over decades of pioneering research has empowered researchers to develop a better comprehension of the versatile regulators of ferroptosis. In this comprehensive review, we have attempted to put a spotlight on the indispensable involvement of non-coding RNAs in the regulation of ferroptosis. We have analyzed the functional role of microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs in the regulation of ferroptosis and how inhibition of ferroptosis promotes carcinogenesis and metastasis. SIGNIFICANCE STATEMENT: The manuscript provides a systematic mechanistic and conceptual comprehension of the recently emerging dynamics of non-coding RNAs and ferroptosis. We also analyze how this interplay shapes the complex process of carcinogenesis and metastasis.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Humanos , Ferroptose/genética , Carcinogênese , Morte Celular , RNA Longo não Codificante/genética
18.
Phytomedicine ; 110: 154624, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584608

RESUMO

BACKGROUND: Fueled by rapidly evolving comprehension of multifaceted nature of cancers, recently emerging preclinical and clinical data have supported researchers in the resolution of knowledge gaps to deepen the understanding of the molecular mechanisms. The extra-ordinary and bewildering chemical diversity encompassed by biologically active natural products continues to be of relevance to drug discovery. Accumulating evidence has spurred a remarkable evolution of concepts related to pharmacological target of oncogenic signaling pathways by polysaccharides in different cancers. PURPOSE: The objective of the current review is to provide new insights into study progress on anticancer effects of bioactive herbal polysaccharides. METHODS: PubMed, Scopus, Web of Science, Embase, and other databases were searched for articles related to anticancer effects of polysaccharides. Searches were conducted to locate relevant publications published up to October 2022. RESULTS: Polysaccharides have been reported to pleiotropically modulate TGF/SMAD, BMP/SMAD, TLR4, mTOR, CXCR4 and VEGF/VEGFR cascades. We have also summarized how different polysaccharides regulated apoptosis and non-coding RNAs. Additionally, this mini-review describes increasingly sophisticated understanding related to polysaccharides mediated tumor suppressive and anti-metastatic effects in tumor-bearing mice. We have also provided an overview of the clinical trials related to chemopreventive role of polysaccharides. CONCLUSION: Genomic and proteomic findings from these studies will facilitate 'next-generation' clinical initiatives in the prevention/inhibition of cancer.


Assuntos
Neoplasias , Proteômica , Animais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais , Polissacarídeos/farmacologia , Apoptose
19.
J Pharmacol Exp Ther ; 384(1): 28-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667688

RESUMO

Cancer is a multifactorial disease, and a wealth of information has enabled basic and clinical researchers to develop a better conceptual knowledge of the highly heterogeneous nature of cancer. Deregulations of spatio-temporally controlled transduction pathways play a central role in cancer progression. NRF2-driven signaling has engrossed significant attention because of its fundamentally unique features to dualistically regulate cancer progression. Context-dependent diametrically opposed roles of NRF2-induced signaling are exciting. More importantly, non-coding RNA (ncRNA) mediated regulation of NRF2 and interplay between NRF2 and ncRNAs have added new layers of complexity to already intricate nature of NRF2 signaling. There is a gradual enrichment in the existing pool of knowledge related to interplay between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in different cancers. However, surprisingly, there are no clues about interplay between circular RNAs and NRF2 in various cancers. Therefore, future studies must converge on the functional characterization of additional important lncRNAs and circular RNAs, which regulated NRF2-driven signaling or, conversely, NRF2 transcriptionally controlled their expression to regulate various stages of cancer. SIGNIFICANCE STATEMENT: Recently, many researchers have focused on the NRF2-driven signaling in cancer progression. Excitingly, discovery of non-coding RNAs has added new layers of intricacy to the already complicated nature of KEAP1/NRF2 signaling in different cancers. These interactions are shaping the NRF2-driven signaling landscape, and better knowledge of these pathways will be advantageous in pharmacological modulation of non-coding RNA-mediated NRF2 signaling in various cancers.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Circular , RNA Longo não Codificante/genética
20.
Crit Rev Food Sci Nutr ; 63(20): 4325-4350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34751072

RESUMO

Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.


Assuntos
Neoplasias , Saponinas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Saponinas/farmacologia , Transdução de Sinais , Apoptose , Dieta , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA