Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(46): 31147-31153, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841156

RESUMO

In order to study the release of cerium nitrate in a self-healing epoxy-based coating, poly (urea-formaldehyde) (PUF) microcapsules containing cerium nitrate were synthesized. The effects of healing agent concentration and weight percent of microcapsules in the epoxy resin were studied through the incorporation of microcapsules within an epoxy-based coating. The prepared microcapsules were characterized using thermogravimetric analysis and Fourier transform infrared spectroscopy and confirmed the successful encapsulation of cerium nitrate within PUF capsules. The self-healing performance of the prepared epoxy coating was investigated in 0.6 M NaCl solution using electrochemical impedance spectroscopy (EIS) tests. The EIS results indicated the successful release of encapsulated cerium nitrate from PUF microcapsules once the damage occurred in the epoxy coating, which led to effective self-healing of the epoxy-based coating. The presence of chlorine and cerium ions in the solution led to the precipitation of cerium hydroxides and oxides in the scratched area as a passive layer which hindered the corrosion in the damaged area. In addition, the EIS results showed that the healing performance of the coatings depends on the weight percent of microcapsules and the concentration of the self-healing agent. The highest self-healing performance was achieved for the maximum amount of microcapsule incorporation (10 wt %), while the increase in the microcapsule percent led to a decrease in the adhesion of the coating to the substrate.

2.
Int J Biol Macromol ; 164: 3349-3360, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882277

RESUMO

This study aimed to characterize novel complex coacervates based on Zedo gum and cress seed gum as natural polysaccharides with gelatin (type-A and type-B) as potential wall materials for encapsulation of anthocyanins. The coacervates were prepared under optimum conditions (pH and gum to gelatin ratio), freeze-dried, and the resulted powders were analyzed in terms of thermal stability, morphology, and molecular interactions. The thermogravimetric analysis revealed that molecular interaction between polysaccharides and gelatins led to enhance the thermal stability of gums. The morphology of coacervates showed that while ZG-gelatin and CSG-gelatin coacervates resulted in cubic and irregular particles, freeze-drying severely changed the morphology of coacervates. Moreover, SEM images at lower magnification showed big voids for lyophilized coacervates, while SEM images confirmed a compact and dense microstructure of coacervates at higher magnification and BET method. Also, the molecular interaction of polysaccharides and gelatin in aqueous media was assessed using Raman spectroscopy. Furthermore, findings showed that the type-A of gelatin is a more suitable protein to form coacervates with polysaccharides. In the next step, natural anthocyanins from barberry were encapsulated by proposed coacervates as wall material. The encapsulated extract had elevated thermal stability and showed a lower degradation rate.


Assuntos
Antocianinas/química , Composição de Medicamentos/métodos , Rosaceae/química , Brassicaceae , Coloides/química , Liofilização , Gelatina/química , Goma Arábica/química , Polissacarídeos/química , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA