Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(29): e2302039, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178408

RESUMO

Ion irradiation with light ions is an appealing way to finely tune the magnetic properties of thin magnetic films and in particular the perpendicular magnetic anisotropy (PMA). In this work, the effect of He+ irradiation on the magnetization reversal and on the domain wall dynamics  of Pt/Co/AlOx trilayers is illustrated. Fluences up to 1.5 × 1015 ions cm-2 strongly decrease the PMA, without affecting neither the spontaneous magnetization nor the strength of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This confirms experimentally the robustness of the DMI interaction against interfacial chemical intermixing, already predicted by theory. In parallel with the decrease of the PMA, a strong decrease of the domain wall depinning field is observed after irradiation. This allows the domain walls to reach large maximum velocities with a lower magnetic field compared to that needed for the pristine films. Decoupling PMA from DMI can, therefore, be beneficial for the design of low energy devices based on domain wall dynamics. When the samples are irradiated with larger He+ fluences, the magnetization gets close to the out-of-plane/in-plane reorientation transition, where ≈100nm size magnetic skyrmions are stabilized. It is observed that as the He+ fluence increases, the skyrmion size decreases while these magnetic textures become more stable against the application of an external magnetic field, as predicted by theoretical models developed for ultrathin films with labyrinthine domains.

2.
Nat Commun ; 13(1): 5257, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071049

RESUMO

Magnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. In the presence of asymmetric exchange interactions, their chirality, which governs their dynamics, is generally considered as an intrinsic parameter set during the sample deposition. In this work, we experimentally demonstrate that a gate voltage can control this key parameter. We probe the chirality of skyrmions and chiral domain walls by observing the direction of their current-induced motion and show that a gate voltage can reverse it. This local and dynamical reversal of the chirality is due to a sign inversion of the interfacial Dzyaloshinskii-Moriya interaction that we attribute to ionic migration of oxygen under gate voltage. Micromagnetic simulations show that the chirality reversal is a continuous transformation, in which the skyrmion is conserved. This control of chirality with 2-3 V gate voltage can be used for skyrmion-based logic devices, yielding new functionalities.

3.
Small ; 17(38): e2102427, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363323

RESUMO

Magneto-ionics is a fast developing research field which opens the perspective of energy efficient magnetic devices, where the magnetization direction is controlled by an electric field which drives the migration of ionic species. In this work, the interfacial perpendicular magnetic anisotropy (PMA) of Pt/Co/oxide stacks covered by ZrO2 , acting as a ionic conductor, is tuned by a gate voltage at room temperature. A large variation of the PMA is obtained by modifying the oxidation of the cobalt layer through the migration of oxygen ions: the easy magnetization axis can be switched reversibly from in-plane, with under-oxidized Co, to in-plane, with over-oxidized Co, passing through an out-of-plane magnetization state. The switching time between the different magnetic states is limited by the ion drift velocity. This depends exponentially on the gate voltage, and is varied by over five orders of magnitude, from several minutes to a few ms. The variation of the PMA versus time during the application of the gate voltage can be modeled with a parabolic variation of the PMA and an exponential decrease of the Co oxidation rate. The possibility to explain the observed effect with a simple theoretical model opens the possibility to engineer materials with optimized properties.


Assuntos
Eletricidade , Óxidos , Anisotropia , Íons , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA