Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 202: 108041, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092085

RESUMO

The Asian tiger mosquito, Aedes albopictus, is a highly invasive and aggressive species capable of transmitting a large number of etiological agents of medical and veterinary importance, posing a high risk for the transmission of emerging viruses between animals and humans. In this work, we evaluated the mosquitocidal activity of Neochloris aquatica against A. albopictus throughout its development and analyzed whether this effect was potentiated when the microalga was cultivated under stress conditions due to nutrient deprivation. Our results suggest that N. aquatica produces metabolites that have negative effects on these insects, including larval mortality, interruption of pupal development, and incomplete emergence of adults when fed on microalgae in the larval stages. When microalgae were cultured under stress conditions, an increase in molting defects was recorded, and the number of healthy adults emerged drastically decreased. Histological studies revealed severe signs of total disintegration of different tissues and organs in the thorax and abdomen regions. The muscles and fat bodies in the midgut and foregut were severely distorted. In particular, larval intestinal tissue damage included vacuolization of the cytoplasm, destruction of brush border microvilli, and dilation of the intercellular space, which are distinctive morphological characteristics of apoptotic cells. Evidence suggests that N. aquatica produces metabolites with mosquitocidal effects that affect development and, therefore, the ability to vector etiological agents of medical and veterinary importance.


Assuntos
Aedes , Clorofíceas , Microalgas , Humanos , Animais , Larva , Muda
2.
Plant Physiol Biochem ; 197: 107635, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36933508

RESUMO

The microalgae Neochloris aquatica were previously evaluated as a potential biological control agent and source of bioactive compounds against immature stages of Culex quinquefasciatus. Larvae reared on microalgae suspension showed mortality or drastic effects with morphological alterations and damage in the midgut. N. aquatica have nutritional and toxic effects, resulting in delayed life cycle and incomplete adult development. Given the possibility of its use as a biological control agent, in this work we evaluate the effect of microalgae on other organisms of the environment, such as plants. Arabidopsis thaliana, a terrestrial plant, and Lemna sp., a floating aquatic plant, were selected as examples. Interaction assays and compound evaluations showed that the microalgae release auxins causing root inhibition, smaller epidermal cells and hairy root development. In Lemna sp., a slight decrease in growth rate was observed, with no deleterious effects on the fronds. On the other hand, we detected a detrimental effect on plants when interactions were performed in a closed environment, in a medium containing soluble carbonate, in which microalgae culture rapidly modifies the pH. The experiments showed that alkalinization of the medium inhibits plant growth, causing bleaching of leaves or fronds. This negative effect in plants was not observed when plants and microalgae were cultured in carbonate-free media. In conclusion, the results showed that N. aquatica can modify plant growth without being harmful, but the rapid alkalinization produced by carbon metabolism of microalgae under CO2-limiting conditions, could regulate the number of plants.


Assuntos
Arabidopsis , Microalgas , Agentes de Controle Biológico/farmacologia , Plantas , Hormônios/farmacologia
3.
J Mol Biol ; 435(16): 167889, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402224

RESUMO

p53 exerts its tumour suppressor activity by modulating hundreds of genes and it can also repress viral replication. Such is the case of human papillomavirus (HPV) through targeting the E2 master regulator, but the biochemical mechanism is not known. We show that the C-terminal DNA binding domain of HPV16 E2 protein (E2C) triggers heterotypic condensation with p53 at a precise 2/1 E2C/p53 stoichiometry at the onset for demixing, yielding large regular spherical droplets that increase in size with E2C concentration. Interestingly, transfection experiments show that E2 co-localizes with p53 in the nucleus with a grainy pattern, and recruits p53 to chromatin-associated foci, a function independent of the DNA binding capacity of p53 as judged by a DNA binding impaired mutant. Depending on the length, DNA can either completely dissolve or reshape heterotypic droplets into irregular condensates containing p53, E2C, and DNA, and reminiscent of that observed linked to chromatin. We propose that p53 is a scaffold for condensation in line with its structural and functional features, in particular as a promiscuous hub that binds multiple cellular proteins. E2 appears as both client and modulator, likely based on its homodimeric DNA binding nature. Our results, in line with the known role of condensation in eukaryotic gene enhancement and silencing, point at biomolecular condensation of E2 with p53 as a means to modulate HPV gene function, strictly dependent on host cell replication and transcription machinery.


Assuntos
Condensados Biomoleculares , Replicação do DNA , Proteínas de Ligação a DNA , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Proteína Supressora de Tumor p53 , Replicação Viral , Humanos , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Domínios Proteicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/fisiologia , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virologia
4.
PLoS Negl Trop Dis ; 15(12): e0009988, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860833

RESUMO

Culex quinquefasciatus is a cosmopolitan species widely distributed in the tropical and subtropical areas of the world. Due to its long history of close association with humans, the transmission of arboviruses and parasites have an important role in veterinary and public health. Adult females feed mainly on birds although they can also feed on humans and other mammals. On the other hand, larvae are able to feed on a great diversity of microorganisms, including microalgae, present in natural or artificial breeding sites with a high organic load. These two particularities, mentioned above, are some of the reasons why this mosquito is so successful in the environment. In this work, we report the identification of a microalga found during field sampling in artificial breeding sites, in a group of discarded tires with accumulated rainwater. Surprisingly, only one of them had a bright green culture without mosquito larvae while the other surrounding tires contained a large number of mosquito larvae. We isolated and identified this microorganism as Neochloris aquatica, and it was evaluated as a potential biological control agent against Cx. quinquefasciatus. The oviposition site preference in the presence of the alga by gravid females, and the effects on larval development were analyzed. Additionally, microalga effect on Cx. quinquefasciatus wild type, naturally infected with the endosymbiotic bacterium Wolbachia (w+) and Wolbachia free (w-) laboratory lines was explored. According to our results, even though it is chosen by gravid females to lay their eggs, the microalga had a negative effect on the development of larvae from both populations. Additionally, when the larvae were fed with a culture of alga supplemented with balanced fish food used as control diet, they were not able to reverse its effect, and were unable to complete development until adulthood. Here, N. aquatica is described as a biological agent, and as a potential source of bioactive compounds for the control of mosquito populations important in veterinary and human health.


Assuntos
Culex/crescimento & desenvolvimento , Culex/microbiologia , Larva/microbiologia , Microalgas , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Animais , Culex/fisiologia , Comportamento Alimentar , Feminino , Mosquitos Vetores/fisiologia , Oviposição , Wolbachia/isolamento & purificação
5.
Plant Cell Physiol ; 60(5): 986-998, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668784

RESUMO

Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.


Assuntos
Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/metabolismo , Anidrases Carbônicas/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
6.
Biochemistry ; 54(33): 5136-46, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26237467

RESUMO

The nonstructural NS1 protein is an essential virulence factor of the human respiratory syncytial virus, with a predominant role in the inhibition of the host antiviral innate immune response. This inhibition is mediated by multiple protein-protein interactions and involves the formation of large oligomeric complexes. There is neither a structure nor sequence or functional homologues of this protein, which points to a distinctive mechanism for blocking the interferon response among viruses. The NS1 native monomer follows a simple unfolding kinetics via a nativelike transition state ensemble, with a half-life of 45 min, in agreement with a highly stable core structure at equilibrium. Refolding is a complex process that involves several slowly interconverting species compatible with proline isomerization. However, an ultrafast folding event with a half-life of 0.2 ms is indicative of a highly folding compatible species within the unfolded state ensemble. On the other hand, the oligomeric assembly route from the native monomer, which does not involve unfolding, shows a monodisperse and irreversible end-point species triggered by a mild temperature change, with half-lives of 160 and 26 min at 37 and 47 °C, respectively, and at a low protein concentration (10 µM). A large secondary structure change into ß-sheet structure and the formation of a dimeric nucleus precede polymerization by the sequential addition of monomers at the surprisingly low rate of one monomer every 34 s. The polymerization phase is followed by the binding to thioflavin-T indicative of amyloid-like, albeit soluble, repetitive ß-sheet quaternary structure. The overall process is reversible only up until ~8 min, a time window in which most of the secondary structure change takes place. NS1's multiple binding activities must be accommodated in a few binding interfaces at most, something to be considered remarkable given its small size (15 kDa). Thus, conformational heterogeneity, and in particular oligomer formation, may provide a means of expand its binding repertoire. These equilibria will be determined by variables such as macromolecular crowding, protein-protein interactions, expression levels, turnover, or specific subcellular localization. The irreversible and quasi-spontaneous nature of the oligomer assembly, together with the fact that NS1 is the most abundant viral protein in infected cells, makes its accumulation highly conceivable under conditions compatible with the cellular milieu. The implications of NS1 oligomers in the viral life cycle and the inhibition of host innate immune response remain to be determined.


Assuntos
Interferons/metabolismo , Dobramento de Proteína , Multimerização Proteica , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/farmacologia , Humanos , Cinética , Ligação Proteica , Redobramento de Proteína , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Vírus Sincicial Respiratório Humano/fisiologia , Solubilidade , Especificidade da Espécie , Especificidade por Substrato , Temperatura , Proteínas não Estruturais Virais/metabolismo
7.
J Biol Chem ; 288(18): 13110-23, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23504368

RESUMO

Conformational rearrangements in antibody·antigen recognition are essential events where kinetic discrimination of isomers expands the universe of combinations. We investigated the interaction mechanism of a monoclonal antibody, M1, raised against E7 from human papillomavirus, a prototypic viral oncoprotein and a model intrinsically disordered protein. The mapped 12-amino acid immunodominant epitope lies within a "hinge" region between the N-terminal intrinsically disordered and the C-terminal globular domains. Kinetic experiments show that despite being within an intrinsically disordered region, the hinge E7 epitope has at least two populations separated by a high energy barrier. Nuclear magnetic resonance traced the origin of this barrier to a very slow (t(1/2)∼4 min) trans-cis prolyl isomerization event involving changes in secondary structure. The less populated (10%) cis isomer is the binding-competent species, thus requiring the 90% of molecules in the trans configuration to isomerize before binding. The association rate for the cis isomer approaches 6 × 10(7) M(-1) s(-1), a ceiling for antigen-antibody interactions. Mutagenesis experiments showed that Pro-41 in E7Ep was required for both binding and isomerization. After a slow postbinding unimolecular rearrangement, a consolidated complex with K(D) = 1.2 × 10(-7) M is reached. Our results suggest that presentation of this viral epitope by the antigen-presenting cells would have to be "locked" in the cis conformation, in opposition to the most populated trans isomer, in order to select the specific antibody clone that goes through affinity and kinetic maturation.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Antivirais/química , Especificidade de Anticorpos , Papillomavirus Humano 16/química , Proteínas E7 de Papillomavirus/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/imunologia , Epitopos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA