Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Neurodegener ; 11(1): 52, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36474289

RESUMO

BACKGROUND: Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS: α-Synuclein, phosphorylated (p-)tau, and amyloid-ß pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS: Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and  more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-ß pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS: Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína , Córtex Insular , Doença por Corpos de Lewy/diagnóstico por imagem
2.
Neuroimage Clin ; 28: 102364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32781423

RESUMO

BACKGROUND: The insula is a central brain hub involved in cognition and affected in Parkinson's disease (PD). The aim of this study was to assess functional connectivity (FC) and betweenness centrality (BC) of insular sub-regions and their relationship with cognitive impairment in PD. METHODS: Whole-brain 3D-T1, resting-state functional MRI and a battery of cognitive tests (CAMCOG) were included for 53 PD patients and 15 controls. The insular cortex was segmented into ventral (vAI) and dorsal (dAI) anterior and posterior sub-regions. Connectivity between insular sub-regions and resting-state networks was assessed and related to cognition; BC was used to further explore nodes associated with cognition. RESULTS: Cognitive performance was significantly lower in PD patients compared to controls (p < 0.01) and was associated with FC of the dAI with default mode network (DMN) (adjusted R2 = 0.37, p < 0.001). In controls, cognitive performance was positively related to FC of the dAI with the fronto-parietal network (FPN) only (adjusted R2 = 0.5, p = 0.003). Regionally, FC of the dAI with the anterior cingulate cortex (ACC) was significantly reduced in PD (F(1,65) = 11, p = 0.002) and correlated with CAMCOG (r = 0.4, p = 0.001). DMN and FPN showed increased BC in PD which correlated with cognition and reduced connectivity of dAI with the ACC (rs = -0.33, p = 0.014 and rs = -0.44, p = 0.001 respectively). CONCLUSIONS: These results highlight the relevance of the insula in cognitive dysfunction in PD. Disconnection of the dAI with ACC was related to altered centrality in the DMN and FPN only in patients. Disturbance in this network triad appears to be particularly relevant for cognitive impairment in PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Encéfalo , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
3.
Brain Imaging Behav ; 14(6): 2799-2816, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31011951

RESUMO

The insular cortex is proposed to function as a central brain hub characterized by wide-spread connections and diverse functional roles. As a result, its centrality in the brain confers high metabolic demands predisposing it to dysfunction in disease. However, the functional profile and vulnerability to degeneration varies across the insular sub-regions. The aim of this systematic review and meta-analysis is to summarize and quantitatively analyze the relationship between insular cortex sub-regional atrophy, studied by voxel based morphometry, with cognitive and neuropsychiatric deficits in frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). We systematically searched through Pubmed and Embase and identified 519 studies that fit our criteria. A total of 41 studies (n = 2261 subjects) fulfilled the inclusion criteria for the meta-analysis. The peak insular coordinates were pooled and analyzed using Anatomic Likelihood Estimation. Our results showed greater left anterior insular cortex atrophy in FTD whereas the right anterior dorsal insular cortex showed larger clusters of atrophy in AD and PD/DLB. Yet contrast analyses did not reveal significant differences between disease groups. Functional analysis showed that left anterior insular cortex atrophy is associated with speech, emotion, and affective-cognitive deficits, and right dorsal atrophy with perception and cognitive deficits. In conclusion, insular sub-regional atrophy, particularly the anterior dorsal region, may contribute to cognitive and neuropsychiatric deficits in neurodegeneration. Our results support anterior insular cortex vulnerability and convey the differential involvement of the insular sub-regions in functional deficits in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Atividades Cotidianas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Humanos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA