Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(3): 2701-2711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538171

RESUMO

By the end of 2019, COVID-19 was reported in Wuhan city of China, and through human-human transmission, this virus spread worldwide and became a pandemic. Initial symptoms of the disease include fever, cough, loss of smell, taste, and shortness of breath, but a decrease in the oxygen levels in the body leads, and pneumonia may ultimately lead to the patient's death. However, the symptoms vary from patient to patient. To understand COVID-19 disease pathogenesis, researchers have tried to understand the cellular pathways that could be targeted to suppress viral replication. Thus, this article reviews the markers that could be targeted to inhibit viral replication by inhibiting the translational initiation complex/regulatory kinases and upregulating host autophagic flux that may lead to a reduction in the viral load. The article also highlights that mTOR inhibitors may act as potential inhibitors of viral replication. mTOR inhibitors such as metformin may inhibit the interaction of SARS-CoV-2 Nsp's and ORFs with mTORC1, LARP1, and 4E-BP. They may also increase autophagic flux by decreasing protein degradation via inhibition of Skp2, further promoting viral cell death. These events result in cell cycle arrest at G1 by p27, ultimately causing cell death.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inibidores de MTOR , Proteínas Adaptadoras de Transdução de Sinal , Replicação Viral , Serina-Treonina Quinases TOR
2.
Biochem Biophys Rep ; 24: 100815, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024841

RESUMO

BACKGROUND: Apolipoprotein A-I (apoA-I) protects against atherosclerosis and participates in the removal of excess cellular cholesterol from peripheral organs. Several naturally occurring apoA-I mutations are associated with familial systemic amyloidosis, with deposition of amyloid aggregates in peripheral organs, resulting in multiple organ failure. Systematic studies on naturally occurring variants are needed to delineate their roles and involvement in pathogenesis. METHODS: We performed a comparative structure-function analysis of five naturally occurring apoA-I variants and the wild-type protein. Circular dichroism, Fourier-transform infrared spectroscopy, thioflavin T and congo red fluorescence assays, thermal, chemical, and proteolytic stability assays, and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine clearance analyses were used to assess the effects of mutations on the structure, function, stability, aggregation, and proteolytic susceptibility of the proteins to explore the mechanisms underlying amyloidosis and hypercholesterolemia. RESULTS: We observed structural changes in the mutants independent of fibril formation, suggesting the influence of the surrounding environment. The mutants were involved in aggregate formation to varying degree; L170P, R173P, and V156E showed an increased propensity to aggregate under different physiological conditions. ß sheet formation indicates that L170P and R173P participate in amyloid formation. Compared to WT, V156E and L170P exhibited higher capacity for lipid clearance. CONCLUSIONS: The selected point mutations, including those outside the hot spot regions of apoA-I structure, perturb the physiochemical and conformational behavior of the protein, influencing its function. GENERAL SIGNIFICANCE: The study provides insights into the structure-function relationships of naturally occurring apoA-I variants outside the hot spot mutation sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA