Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679074

RESUMO

Microalgae as unicellular eukaryotic organisms demonstrate several advantages for biotechnological and biological applications. Natural derived microalgae products demand has increased in food, cosmetic and nutraceutical applications lately. The natural antioxidants have been used for attenuation of mitochondrial cell damage caused by oxidative stress. This study evaluates the in vitro protective effect of Chlorella vulgaris bioactive extracts against oxidative stress in human mesenchymal stromal/stem cells (MSCs). The classical solid-liquid and the supercritical extraction, using biomass of commercially available and laboratory cultivated C. vulgaris, are employed. Oxidative stress induced by 300 µM H2O2 reduces cell viability of MSCs. The addition of C. vulgaris extracts, with increased protein content compared to carbohydrates, to H2O2 treated MSCs counteracted the oxidative stress, reducing reactive oxygen species levels without affecting MSC proliferation. The supercritical extraction was the most efficient extraction method for carotenoids resulting in enhanced antioxidant activity. Pre-treatment of MSCs with C. vulgaris extracts mitigates the oxidative damage ensued by H2O2. Initial proteomic analysis of secretome from licensed (TNFα-activated) MSCs treated with algal extracts reveals a signature of differentially regulated proteins that fall into clinically relevant pathways such as inflammatory signaling. The enhanced antioxidative and possibly anti-inflammatory capacity could be explored in the context of future cell therapies.

2.
Biomol Concepts ; 8(1): 13-36, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284030

RESUMO

The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.


Assuntos
Sumoilação , Proteína SUMO-1/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Int J Biochem Cell Biol ; 79: 478-487, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27343429

RESUMO

The small ubiquitin related modifier SUMO regulates protein functions to maintain cell homeostasis. SUMO attachment is executed by the hierarchical action of E1, E2 and E3 enzymes of which E3 ligases ensure substrate specificity. We recently identified the ZNF451 family as novel class of SUMO2/3 specific E3 ligases and characterized their function in SUMO chain formation. The founding member, ZNF451isoform1 (ZNF451-1) partially resides in PML bodies, nuclear structures organized by the promyelocytic leukemia gene product PML. As PML and diverse PML components are well known SUMO substrates the question arises whether ZNF451-1 is involved in their sumoylation. Here, we show that ZNF451-1 indeed functions as SUMO2/3 specific E3 ligase for PML and selected PML components in vitro. Mutational analysis indicates that substrate sumoylation employs an identical biochemical mechanism as we described for SUMO chain formation. In vivo, ZNF451-1 RNAi depletion leads to PML stabilization and an increased number of PML bodies. By contrast, PML degradation upon arsenic trioxide treatment is not ZNF451-1 dependent. Our data suggest a regulatory role of ZNF451-1 in fine-tuning physiological PML levels in a RNF4 cooperative manner in the mouse neuroblastoma N2a cell-line.


Assuntos
Núcleo Celular/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Dedos de Zinco
4.
Biotechnol J ; 9(11): 1402-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186301

RESUMO

Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans.


Assuntos
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Animais , Sequência de Bases , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular
5.
Gene Expr Patterns ; 15(2): 124-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24929033

RESUMO

Rio kinases are atypical serine/threonine kinases that emerge as potential cooperation partners in Ras-driven tumors. In the current study, we performed an RNAi screen in Caenorhabditis elegans to identify suppressors of oncogenic Ras signaling. Aberrant Ras/Raf signaling in C. elegans leads to the formation of a multi-vulva (Muv) phenotype. We found that depletion of riok-1, the C. elegans orthologue of the mammalian RioK1, suppressed the Muv phenotype. By using a promoter GFP construct, we could show that riok-1 is expressed in neuronal cells, the somatic gonad, the vulva, the uterus and the spermatheca. Furthermore, we observed developmental defects in the gonad upon riok-1 knockdown in a wildtype background. Our data suggest that riok-1 is a modulator of the Ras signaling pathway, suggesting implications for novel interventions in the context of Ras-driven tumors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Butadienos/química , Linhagem da Célula , Inibidores Enzimáticos/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gônadas/embriologia , Dados de Sequência Molecular , Neurônios/metabolismo , Nitrilas/química , Fenótipo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo
6.
Hum Mol Genet ; 21(16): 3587-603, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611162

RESUMO

Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents ß-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios/patologia , Tauopatias/etiologia , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Barreira Hematoencefálica/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Hidrazinas/farmacologia , Azul de Metileno/farmacologia , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fenótipo , Fosforilação , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/metabolismo , Tauopatias/patologia , Tiazóis/farmacologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA