Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Diabetes Sci Technol ; : 19322968221145184, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36540007

RESUMO

BACKGROUND: CamAPS FX is a hybrid closed-loop smartphone app used to manage type one diabetes. The closed-loop algorithm has a default target glucose of 5.8 mmol/L (104.5 mg/dL), but users can select personal glucose targets (adjustable between 4.4 mmol/L and 11.0 mmol/L [79 mg/dL and 198 mg/dL, respectively]). METHOD: In this post-hoc analysis, we evaluated the impact of personal glucose targets on glycemic control using data from participants in five randomized controlled trials. RESULTS: Personal glucose targets were widely used, with 20.3% of all days in the data set having a target outside the default target bin (5.5-6.0 mmol/L [99-108 mg/dL]). Personal glucose targets >6.5 mmol/L (117 mg/dL) were associated with significantly less time in target range (3.9-10.0 mmol/L [70-180 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: mean difference = -3.2 percentage points [95% CI: -5.3 to -1.2; P < .001]; 7.0-7.5 mmol/L [126-135 mg/dL]: -10.8 percentage points [95% CI: -14.1 to -7.6; P < .001]). Personal targets >6.5 mmol/L (117 mg/dL) were associated with significantly lower time (<3.9 mmol/L [<70 mg/dL]; 6.5-7.0 mmol/L [117-126 mg/dL]: -1.85 percentage points [95% CI: -2.37 to -1.34; P < .001]; 7.0-7.5 mmol/L [126-135 mg/dL]: -2.68 percentage points [95% CI: -3.49 to -1.86; P < .001]). CONCLUSIONS: Discrete study populations showed differences in glucose control when applying similar personal targets.

2.
Cereb Cortex ; 31(3): 1489-1499, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33119062

RESUMO

We examined whether PTPN11 mutations affect the white matter connectivity of the developing human brain. Germline activating mutations to the PTPN11 gene cause overactivation of the Ras-Mitogen-Activated Protein Kinase pathway. Activating mutations cause Noonan syndrome (NS), a developmental disorder associated with hyperactivity and cognitive weakness in attention, executive function, and memory. In mouse models of NS, PTPN11 mutations cause reduced axon myelination and white matter formation, while the effects of PTPN11 mutations on human white matter are largely unknown. For the first time, we assessed 17 children with NS (9 females, mean age, 8.68 ± 2.39) and 17 age- and sex-matched controls (9 female, mean age, 8.71 ± 2.40) using diffusion brain imaging for white matter connectivity and structural magnetic resonance imaging to characterize brain morphology. Children with NS showed widespread reductions in fractional anisotropy (FA; 82 613 voxels, t = 1.49, P < 0.05) and increases in radial diffusivity (RD; 94 044 voxels, t = 1.22, P < 0.05), denoting decreased white matter connectivity. In NS, the FA of the posterior thalamic radiation correlated positively with inhibition performance, whereas connectivity in the genu of the corpus callosum was inversely associated with auditory attention performance. Additionally, we observed negative and positive correlations, respectively, between memory and the cingulum hippocampus, and memory and the cingulum cingulate gyrus. These findings elucidate the neural mechanism underpinning the NS cognitive phenotype, and may serve as a brain-based biomarker.


Assuntos
Encéfalo/patologia , Vias Neurais/patologia , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Substância Branca/patologia , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Síndrome de Noonan/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA