Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 2: e201, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23212585

RESUMO

Epidemiological and genome-wide association studies of severe psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD), suggest complex interactions between multiple genetic elements and environmental factors. The involvement of genetic elements such as Human Endogenous Retroviruses type 'W' family (HERV-W) has consistently been associated with SZ. HERV-W envelope gene (env) is activated by environmental factors and encodes a protein displaying inflammation and neurotoxicity. The present study addressed the molecular characteristics of HERV-W env in SZ and BD. Hundred and thirty-six patients, 91 with BD, 45 with SZ and 73 healthy controls (HC) were included. HERV-W env transcription was found to be elevated in BD (P<10-4) and in SZ (P=0.012) as compared with HC, but with higher values in BD than in SZ group (P<0.01). The corresponding DNA copy number was paradoxically lower in the genome of patients with BD (P=0.0016) or SZ (P<0.0003) than in HC. Differences in nucleotide sequence of HERV-W env were found between patients with SZ and BD as compared with HC, as well as between SZ and BD. The molecular characteristics of HERV-W env also differ from what was observed in Multiple Sclerosis (MS) and may represent distinct features of the genome of patients with BD and SZ. The seroprevalence for Toxoplasma gondii yielded low but significant association with HERV-W transcriptional level in a subgroup of BD and SZ, suggesting a potential role in particular patients. A global hypothesis of mechanisms inducing such major psychoses is discussed, placing HERV-W at the crossroads between environmental, genetic and immunological factors. Thus, particular infections would act as activators of HERV-W elements in earliest life, resulting in the production of an HERV-W envelope protein, which then stimulates pro-inflammatory and neurotoxic cascades. This hypothesis needs to be further explored as it may yield major changes in our understanding and treatment of severe psychotic disorders.


Assuntos
Transtorno Bipolar/virologia , Variações do Número de Cópias de DNA/genética , Retrovirus Endógenos/genética , Genes env/genética , Esquizofrenia/virologia , Toxoplasmose/sangue , Transtorno Bipolar/sangue , Transtorno Bipolar/genética , Estudos de Casos e Controles , Retrovirus Endógenos/metabolismo , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/sangue , Esquizofrenia/genética
2.
J Pharmacol Exp Ther ; 332(3): 912-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008958

RESUMO

Histamine potentiates activation of native and recombinant N-methyl-d-aspartate receptors (NMDARs), but its mechanisms of action and physiological functions in the brain remain controversial. Using four different models, we have further investigated the histamine-induced potentiation of various NMDAR-mediated responses. In single cultured hippocampal neurons, histamine potentiated NMDA currents. It also potentiated the NMDA-induced increase in intracellular calcium in the absence, as well as with saturating concentrations, of exogenous d-serine, indicating both glycine-dependent and glycine-independent components of its effect. In rat hippocampal synaptosomes, histamine strongly potentiated NMDA-induced [(3)H]noradrenaline release. The profile of this response contained several signatures of the histamine-mediated effect at neuronal or recombinant NMDARs. It was NR2B-selective, being sensitive to micromolar concentrations of ifenprodil. It was reproduced by tele-methylhistamine, the metabolite of histamine in brain, and it was antagonized by impromidine, an antagonist/inverse agonist of histamine on NMDA currents. Up to now, histamine was generally considered to interact with the polyamine site of the NMDAR. However, spermine did not enhance NMDA-induced [(3)H]noradrenaline release from synaptosomes, and the potentiation of the same response by tele-methylhistamine was not antagonized by the polyamine antagonist arcaine. In hippocampal membranes, like spermine, tele-methylhistamine enhanced [(3)H]dl-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP39653) binding to the glutamate site. In contrast, spermine increased nonequilibrium [(3)H]5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) binding, and suppressed [(3)H]ifenprodil binding, whereas histamine and tele-methylhistamine had no effect. In conclusion, the histamine-induced potentiation of NMDARs occurs in the brain under normal conditions. Histamine does not bind to the polyamine site, but to a distinct entity, the so-called histamine site of the NMDAR.


Assuntos
Histamina/farmacologia , Poliaminas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Sítio Alostérico , Animais , Sítios de Ligação , Cálcio/metabolismo , Maleato de Dizocilpina/farmacologia , Sinergismo Farmacológico , Hipocampo/metabolismo , Técnicas In Vitro , Espaço Intracelular/metabolismo , Masculino , Metilistaminas/farmacologia , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Piperidinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Wistar , Espermina/farmacologia , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA