Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Converg ; 11(1): 33, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154073

RESUMO

Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124848, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032228

RESUMO

Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.

3.
Anal Chem ; 96(29): 12093-12101, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975860

RESUMO

Antimicrobial resistance (AMR) is a significant global health threat concern, necessitating healthcare practitioners to accurately prescribe the most effective antimicrobial agents with correct doses to combat resistant infections. This is necessary to improve the therapeutic outcomes for patients and prevent further increase in AMR. Consequently, there is an urgent need to implement rapid and sensitive clinical diagnostic methods to identify resistant pathogenic strains and monitor the efficacy of antimicrobials. In this study, we report a novel proof-of-concept magnetic scaffold-recombinase polymerase amplification (RPA) technique, coupled with an enzyme-linked oligonucleotide assay (ELONA) and surface-enhanced Raman scattering (SERS) detection, aimed at selectively amplifying and detecting the DNA signature of three resistant carbapenemase genes, VIM, KPC, and IMP. To achieve this, streptavidin-coated magnetic beads were functionalized with biotin-modified forward primers. RPA was conducted on the surface of the beads, resulting in an immobilized duplex amplicon featuring a single overhang tail specific to each gene. These tails were subsequently hybridized with recognition HRP probes conjugated to a complementary single-stranded oligonucleotide and detected colorimetrically. Additionally, they underwent hybridization with similar selective SERS probes and were measured using a handheld Raman spectrometer. The resulting quantification limits were at subpicomolar level for both assays, allowing the potential for early diagnosis. Moreover, we demonstrated the platform capability to conduct a multiplex RPA-SERS detection of the three genes in a single tube. Compared to similar approaches like PCR, RPA offers advantages of speed, affordability, and isothermal operation at 37 °C, eliminating the need for a thermal cycler. The whole assay was completed within <2 h. Therefore, this novel magnetic scaffold ELONA/SERS-RPA platform, for DNA detection, demonstrated excellent capability for the rapid monitoring of AMR in point-of-care applications, in terms of sensitivity, portability, and speed of analysis.


Assuntos
Análise Espectral Raman , Humanos , Técnicas de Amplificação de Ácido Nucleico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Recombinases/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Antibacterianos/farmacologia , Oligonucleotídeos/química , DNA Bacteriano/análise , DNA Bacteriano/genética , Limite de Detecção
4.
Analyst ; 149(13): 3513-3517, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38842276

RESUMO

Live chicken egg embryos offer new opportunities for evaluation and continuous monitoring of tumour growth for in vivo studies compared to traditional rodent models. Here, we report the first use of surface enhanced Raman scattering (SERS) mapping and surface enhanced spatially offset Raman scattering (SESORS) for the detection and localisation of targeted gold nanoparticles in live chicken egg embryos bearing a glioblastoma tumour.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Animais , Análise Espectral Raman/métodos , Ouro/química , Embrião de Galinha , Nanopartículas Metálicas/química , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Humanos , Propriedades de Superfície , Modelos Animais de Doenças , Linhagem Celular Tumoral
5.
Anal Chem ; 96(26): 10639-10647, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889191

RESUMO

Hepatic toxicity is a leading cause of the termination of clinical trials and the withdrawal of therapeutics following regulatory approval. The detection of drug-induced liver injury (DILI) is therefore of importance to ensure patient safety and the effectiveness of novel small molecules and drugs. DILI encompasses drug-induced steatosis (DIS) and drug-induced phospholipidosis (DIPL) which involve the accumulation of excess intracellular lipids. Here, we develop hyperspectral stimulated Raman scattering (SRS) microscopy as a label-free methodology for discriminating DIS and DIPL in mammalian cell culture. We demonstrate that hyperspectral SRS imaging in tandem with spectral phasor analysis is capable of discriminating DIS and DIPL based on the nature and distribution of intracellular lipids resulting from each process. To demonstrate the practical application of this methodology, we develop a panel of alkyne-tagged propranolol analogues that display varying DILI effects. Using hyperspectral SRS imaging together with spectral phasor analysis, our label-free methodology corroborated the standard fluorescence-based assay for DILI. As a label-free screening method, it offers a convenient and expedient methodology for visualizing hepatotoxicity in cell cultures which could be integrated into the early stages of the drug development process for screening new chemical entities for DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Humanos , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Propranolol/química , Células Hep G2
6.
RSC Adv ; 14(18): 12781-12795, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645514

RESUMO

Upcycling Covid19 plastic waste into valuable carbonaceous materials for energy storage applications is a sustainable and green approach to minimize the burden of waste plastic on the environment. Herein, we developed a facile single step activation technique for producing activated carbon consisting of spherical flower like carbon nanosheets and amorphous porous flakes from used PET [poly(ethylene terephthalate)] face shields for supercapacitor applications. The as-obtained activated carbon exhibited a high specific surface area of 1571 m2 g-1 and pore volume of 1.64 cm3 g-1. The specific capacitance of these carbon nanostructure-coated stainless steel electrodes reached 228.2 F g-1 at 1 A g-1 current density with excellent charge transport features and good rate capability in 1 M Na2SO4 aqueous electrolyte. We explored the slot-die coating technique for large-area coatings of flexible high-performance activated carbon electrodes with special emphasis on optimizing binder concentration. Significant improvement in electrochemical performance was achieved for the electrodes with 15 wt% Nafion concentration. The flexible supercapacitors fabricated using these electrodes showed high energy and power density of 21.8 W h kg-1 and 20 600 W kg-1 respectively, and retained 96.2% of the initial capacitance after 10 000 cycles at 2 A g-1 current density. The present study provides a promising sustainable approach for upcycling PET plastic waste for large area printable supercapacitors.

7.
Toxicol Sci ; 199(2): 203-209, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521541

RESUMO

Drug-induced liver injury (DILI) is a challenge in clinical medicine and drug development. Highly sensitive novel biomarkers have been identified for detecting DILI following a paracetamol overdose. The study objective was to evaluate biomarker performance in a 14-day trial of therapeutic dose paracetamol. The PATH-BP trial was a double-blind, placebo-controlled, crossover study. Individuals (n = 110) were randomized to receive 1 g paracetamol 4× daily or matched placebo for 2 weeks followed by a 2-week washout before crossing over to the alternate treatment. Blood was collected on days 0 (baseline), 4, 7, and 14 in both arms. Alanine transaminase (ALT) activity was measured in all patients. MicroRNA-122 (miR-122), cytokeratin-18 (K18), and glutamate dehydrogenase (GLDH) were measured in patients who had an elevated ALT on paracetamol treatment (≥50% from baseline). ALT increased in 49 individuals (45%). All 3 biomarkers were increased at the time of peak ALT (K18 paracetamol arm: 18.9 ± 9.7 ng/ml, placebo arm: 11.1 ± 5.4 ng/ml, ROC-AUC = 0.80, 95% CI 0.71-0.89; miR-122: 15.1 ± 12.9fM V 4.9 ± 4.7fM, ROC-AUC = 0.83, 0.75-0.91; and GLDH: 24.6 ± 31.1U/l V 12.0 ± 11.8U/l, ROC-AUC = 0.66, 0.49-0.83). All biomarkers were correlated with ALT (K18 r = 0.68, miR-122 r = 0.67, GLDH r = 0.60). To assess sensitivity, biomarker performance was analyzed on the visit preceding peak ALT (mean 3 days earlier). K18 identified the subsequent ALT increase (K18 ROC-AUC = 0.70, 0.59-0.80; miR-122 ROC-AUC = 0.60, 0.49-0.72, ALT ROC-AUC = 0.59, 0.48-0.70; GLDH ROC-AUC = 0.70, 0.50-0.90). Variability was lowest for ALT and K18. In conclusion, K18 was more sensitive than ALT, miR-122, or GLDH and has potential significant utility in the early identification of DILI in trials and clinical practice.


Assuntos
Acetaminofen , Alanina Transaminase , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas , Estudos Cross-Over , Queratina-18 , Humanos , Alanina Transaminase/sangue , Biomarcadores/sangue , Masculino , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Método Duplo-Cego , Queratina-18/sangue , Adulto , Pessoa de Meia-Idade , MicroRNAs/sangue , Adulto Jovem , Glutamato Desidrogenase/sangue , Analgésicos não Narcóticos
8.
Analyst ; 149(5): 1527-1536, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38265775

RESUMO

Five carbapenemase enzymes, coined the 'big five', have been identified as the biggest threat to worldwide antibiotic resistance based on their broad substrate affinity and global prevalence. Here we show the development of a molecular detection method for the gene sequences from the five carbapenemases utilising the isothermal amplification method of recombinase polymerase amplification (RPA). We demonstrate the successful detection of each of the big five carbapenemase genes with femtomolar detection limits using a spatially separated multiplex amplification strategy. The approach uses tailed oligonucleotides for hybridisation, reducing the complexity and cost of the assay compared to classical RPA detection strategies. The reporter probe, horseradish peroxidase, generates the measureable output on a benchtop microplate reader, but more notably, our study leverages the power of a portable Raman spectrometer, enabling up to a 19-fold enhancement in the limit of detection. Significantly, the development approach employed a solid-phase RPA format, wherein the forward primers targeting each of the five carbapenemase genes are immobilised to a streptavidin-coated microplate. The adoption of this solid-phase methodology is pivotal for achieving a successful developmental pathway when employing this streamlined approach. The assay takes 2 hours until result, including a 40 minutes RPA amplification step at 37 °C. This is the first example of using solid-phase RPA for the detection of the big five and represents a milestone towards the developments of an automated point-of-care diagnostic for the big five using RPA.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Recombinases/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas de Bactérias/genética , beta-Lactamases/genética , Sensibilidade e Especificidade
9.
J Phys Chem C Nanomater Interfaces ; 127(50): 24475-24486, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38148849

RESUMO

Owing to their biocompatibility, gold nanoparticles have many applications in healthcare, notably for targeted drug delivery and the photothermal therapy of tumors. The addition of a silica shell to the nanoparticles can help to minimize the aggregation of the nanoparticles upon exposure to harsh environments and protect any Raman reporters adsorbed onto the metal surface. Here, we report the effects of the addition of a silica shell on the photothermal properties of a series of gold nanostructures, including gold nanoparticle aggregates. The presence of a Raman reporter at the surface of the gold nanoparticles also allows the structures to be evaluated by surface-enhanced Raman scattering (SERS). In this work, we explore the relationship between the degree of aggregation and the position and the extinction of the near-infrared plasmon on the observed SERS intensity and in the increase in bulk temperature upon near-infrared excitation. By tailoring the concentration of the silane and the thickness of the silica shell, it is possible to improve the photothermal heating capabilities of the structures without sacrificing the SERS intensity or changing the optical properties of the gold nanoparticle aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA