Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 16: 843794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546872

RESUMO

Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.

2.
Cancer Res Commun ; 2(2): 66-77, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-36860494

RESUMO

Adenomatous polyposis coli (APC) truncations occur in many colorectal cancers and are often associated with immune infiltration. The aim of this study was to determine whether a combination of Wnt inhibition with anti-inflammatory (sulindac) and/or proapototic (ABT263) drugs can reduce colon adenomas. Apc min/+ and doublecortin-like kinase 1 (Dclk1)Cre/+ ;Apc fl/fl mice were exposed to dextran sulphate sodium (DSS) in their drinking water to promote the formation of colon adenomas. Mice were then treated with either a Wnt-signaling antagonist pyrvinium pamoate (PP), an anti-inflammatory agent sulindac or proapoptotic compound ABT263 or a combination of PP+ABT263, or PP+sulindac. Colon adenoma frequency, size, and T-cell abundance were measured. DSS treatment resulted in significant increases in colon adenoma number (P < 0.001, n > 5) and burden in Apc min/+ (P < 0.01, n > 5) and Dclk1 Cre/+ ;Apc fl/fl (P < 0.02, n > 5) mice. There was no effect on adenomas following treatment with PP in combination with ABT263. Adenoma number and burden were reduced with PP+sulindac treatment in Dclk1 Cre/+;Apc fl/fl mice (P < 0.01, n > 17) and in Apc min/+ mice (P < 0.001, n > 7) treated with sulindac or PP+sulindac with no detectable toxicity. PP treatment of Apc min/+ mice increased the frequency of CD3+ cells in the adenomas. The combination of Wnt pathway inhibition with sulindac was more effective in Dclk1 Cre/+;Apc fl/fl mice and provides an opportunity for killing Apc-mutant colon adenoma cells, indicating a strategy for both colorectal cancer prevention and potential new treatments for patients with advanced colorectal cancer. Outcomes from the results of this study may be translatable to the clinic for management of FAP and other patients with a high risk of developing colorectal cancer. Significance: Colorectal cancer is one of the most common cancers worldwide with limited therapeutic options. APC and other Wnt signaling mutations occur in the majority of colorectal cancers but there are currently no Wnt inhibitors in the clinic. The combination of Wnt pathway inhibition with sulindac provides an opportunity for killing Apc-mutant colon adenoma cells and suggests a strategy for colorectal cancer prevention and new treatments for patients with advanced colorectal cancer.


Assuntos
Adenoma , Polipose Adenomatosa do Colo , Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Adenoma/tratamento farmacológico , Polipose Adenomatosa do Colo/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sulindaco/farmacologia
3.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712556

RESUMO

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Assuntos
Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antimitóticos/farmacocinética , Antimitóticos/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitose/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Biol Cell ; 32(2): 120-130, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237836

RESUMO

The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell-cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell-cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell-cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased. Analysis of cell-cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells, and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell-cell adhesion. The ESRP1 transcript is reduced in primary colorectal cancer, and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores the cell-cell adhesion gene and posttranscriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell-cell adhesion.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Cateninas/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Via de Sinalização Wnt , delta Catenina
5.
PLoS One ; 15(10): e0240746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057364

RESUMO

Truncating mutations in the tumour suppressor gene APC occur frequently in colorectal cancers and result in the deregulation of Wnt signalling as well as changes in cell-cell adhesion. Using quantitative imaging based on the detection of membrane-associated E-cadherin, we undertook a protein coding genome-wide siRNA screen to identify genes that regulate cell surface E-cadherin in the APC-defective colorectal cancer cell line SW480. We identified a diverse set of regulators of E-cadherin that offer new insights into the regulation of cell-cell adhesion, junction formation and genes that regulate proliferation or survival of SW480 cells. Among the genes whose depletion promotes membrane-associated E-cadherin, we identified ZEB1, the microRNA200 family, and proteins such as a ubiquitin ligase UBE2E3, CDK8, sorting nexin 27 (SNX27) and the matrix metalloproteinases, MMP14 and MMP19. The screen also identified 167 proteins required for maintaining E-cadherin at cell-cell adherens junctions, including known junctional proteins, CTNND1 and CTNNA1, as well as signalling enzymes, DUSP4 and MARK2, and transcription factors, TEAD3, RUNX2 and TRAM2. A better understanding of the post-translational regulation of E-cadherin provides new opportunities for restoring cell-cell adhesion in APC-defective cells.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Caderinas/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Proteínas de Membrana/genética , Mutação/genética , RNA Interferente Pequeno/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Caderinas/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias do Colo/patologia , Humanos , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos
6.
Nat Commun ; 11(1): 3151, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561730

RESUMO

Mixed lineage kinase domain-like (MLKL) is the terminal protein in the pro-inflammatory necroptotic cell death program. RIPK3-mediated phosphorylation is thought to initiate MLKL oligomerization, membrane translocation and membrane disruption, although the precise choreography of events is incompletely understood. Here, we use single-cell imaging approaches to map the chronology of endogenous human MLKL activation during necroptosis. During the effector phase of necroptosis, we observe that phosphorylated MLKL assembles into higher order species on presumed cytoplasmic necrosomes. Subsequently, MLKL co-traffics with tight junction proteins to the cell periphery via Golgi-microtubule-actin-dependent mechanisms. MLKL and tight junction proteins then steadily co-accumulate at the plasma membrane as heterogeneous micron-sized hotspots. Our studies identify MLKL trafficking and plasma membrane accumulation as crucial necroptosis checkpoints. Furthermore, the accumulation of phosphorylated MLKL at intercellular junctions accelerates necroptosis between neighbouring cells, which may be relevant to inflammatory bowel disease and other necroptosis-mediated enteropathies.


Assuntos
Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Transporte Proteico , Proteínas de Junções Íntimas/metabolismo
7.
Redox Biol ; 28: 101374, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743887

RESUMO

A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity.


Assuntos
Mitocôndrias/metabolismo , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Lactamas Macrocíclicas/farmacologia , Mitocôndrias/efeitos dos fármacos , Fenótipo , Bibliotecas de Moléculas Pequenas/farmacologia , Vitamina K 3/farmacologia
8.
Genom Data ; 7: 293-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981430

RESUMO

The adenomatous polyposis coli (APC) tumour suppressor gene is mutated in about 80% of colorectal cancers (CRC) Brannon et al. (2014) [1]. APC is a large multifunctional protein that regulates many biological functions including Wnt signalling (through the regulation of beta-catenin stability) Reya and Clevers (2005) [2], cell migration Kroboth et al. (2007), Sansom et al. (2004) [3], [4], mitosis Kaplan et al. (2001) [5], cell adhesion Faux et al. (2004), Carothers et al. (2001) [6], [7] and differentiation Sansom et al. (2004) [4]. Although the role of APC in CRC is often described as the deregulation of Wnt signalling, its other biological functions suggest that there are other factors at play that contribute to the onset of adenomas and the progression of CRC upon the truncation of APC. To identify genes and pathways that are dysregulated as a consequence of loss of function of APC, we compared the gene expression profiles of the APC mutated human CRC cell line SW480 following reintroduction of wild-type APC (SW480 + APC) or empty control vector (SW480 + vector control) Faux et al. (2004) . Here we describe the RNA-seq data derived for three biological replicates of parental SW480, SW480 + vector control and SW480 + APC cells, and present the bioinformatics pipeline used to test for differential gene expression and pathway enrichment analysis. A total of 1735 genes showed significant differential expression when APC was restored and were enriched for genes associated with cell polarity, Wnt signalling and the epithelial to mesenchymal transition. There was additional enrichment for genes involved in cell-cell adhesion, cell-matrix junctions, angiogenesis, axon morphogenesis and cell movement. The raw and analysed RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE76307. This dataset is useful for further investigations of the impact of APC mutation on the properties of colorectal cancer cells.

9.
BMC Res Notes ; 6: 429, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24156781

RESUMO

BACKGROUND: The adenomatous polyposis coli (APC) tumour suppressor gene encodes a 2843 residue (310 kDa) protein. APC is a multifunctional protein involved in the regulation of ß-catenin/Wnt signalling, cytoskeletal dynamics and cell adhesion. APC mutations occur in most colorectal cancers and typically result in truncation of the C-terminal half of the protein. RESULTS: In order to investigate the biophysical properties of APC, we have generated a set of monoclonal antibodies which enable purification of recombinant forms of APC. Here we describe the characterisation of these anti-APC monoclonal antibodies (APC-NT) that specifically recognise endogenous APC both in solution and in fixed cells. Full-length APC(1-2843) and cancer-associated, truncated APC proteins, APC(1-1638) and APC(1-1311) were produced in Sf9 insect cells. CONCLUSIONS: Recombinant APC proteins were purified using a two-step affinity approach using our APC-NT antibodies. The purification of APC proteins provides the basis for detailed structure/function analyses of full-length, cancer-truncated and endogenous forms of the protein.


Assuntos
Proteína da Polipose Adenomatosa do Colo/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Cromatografia de Afinidade/métodos , Proteínas Recombinantes/isolamento & purificação , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos/administração & dosagem , Antígenos/química , Baculoviridae/genética , Cães , Expressão Gênica , Humanos , Células Madin Darby de Rim Canino , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera
10.
J Cell Biol ; 198(3): 331-41, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22851318

RESUMO

The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit that, in SCs, can yield daughter cell anisotropic movement away from niche-supporting cells. We propose that this contributes to SC homeostasis. Importantly, we demonstrate that some SC divisions are asymmetric with respect to cell fate and provide data suggesting that, in some SCs, mNumb displays asymmetric segregation. Some of these processes were altered in apparently normal crypts and microadenomas of mice carrying germline Apc mutations, shedding new light on the first stages of progression toward colorectal cancer.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Mucosa Intestinal/metabolismo , Actinas/química , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Anisotropia , Linhagem Celular , Cromatina/química , Cruzamentos Genéticos , Progressão da Doença , Cães , Homeostase , Interfase , Intestinos/patologia , Camundongos , Camundongos Knockout , Microscopia Confocal/métodos , Mutação , Processos Estocásticos , Telófase
11.
Electrophoresis ; 33(12): 1804-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740469

RESUMO

ß-catenin is a member of the armadillo repeat family of proteins and has important functions in cell-cell adhesion and Wnt signalling. Different protein species of ß-catenin have been shown to exist in the cell and the relative proportions of these species are altered upon stimulation of cells with Wnt-3a (Gottardi and Gumbiner, 2004). In order to determine whether posttranslational modifications (PTMs) of ß-catenin underlie these different protein species, we have used 2DE separation and immunoblotting with an antibody specific for ß-catenin. High-resolution separation of differentially modified species of ß-catenin in 2DE required the addition of ASB-16, a zwitterionic detergent that can solubilise integral membrane proteins. ASB-16 was also necessary for focussing of other armadillo repeat proteins, such as γ-catenin and p120-catenin. 2DE using ASB-16 allowed detection of a previously unreported phosphorylation site in the transcriptionally active form of ß-catenin that binds to GST-Tcf in response to Wnt signalling.


Assuntos
Betaína/análogos & derivados , beta Catenina/química , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Betaína/química , Células CACO-2 , Eletroforese em Gel Bidimensional , Humanos , Focalização Isoelétrica , Células L , Camundongos , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Fator de Transcrição 4 , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
12.
Electrophoresis ; 33(12): 1873-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740476

RESUMO

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are common in both inherited and sporadic forms of colorectal cancer (CRC), and are associated with dysregulated Wnt signaling. Colon carcinoma SW480 cells restored with stable expression of wild-type APC (SW480APC cells) exhibit attenuated Wnt signaling, and reduced tumorigenicity, including increased cell adhesion. We performed a comparative proteomic analysis of exosomes isolated from SW480 and SW480APC cells to examine the effects of restored APC on exosome protein expression. A salient finding of our study was the unique expression of the Wnt antagonist Dickkopf-related protein 4 (DKK4) in SW480APC, but not parental SW480 cell-derived exosomes. Upregulation of DKK4 in SW480APC cells was confirmed by semiquantitative RT-PCR, immunoblotting, and immunogold electron microscopy. Analysis of the DKK4 gene promoter by methylation-specific PCR revealed reduced methylation in SW480APC cells, while RT-PCR demonstrated the downregulation of DNMT-3a, compared to the parental cell line. Our discovery of exosome-mediated secretion of DKK4 opens up the possibility that exosomal DKK4 may be a mechanism used by epithelial colon cells to regulate Wnt signaling which is lost during CRC progression.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Neoplasias do Colo/metabolismo , Exossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Exossomos/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metilação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteoma/análise , Proteoma/genética , Proteoma/metabolismo , Proteômica , Regulação para Cima , Via de Sinalização Wnt
13.
Biochim Biophys Acta ; 1824(7): 925-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22469663

RESUMO

ß-catenin is a signaling protein with diverse functions in cell adhesion and Wnt signaling. Although ß-catenin has been shown to participate in many protein-protein interactions, it is not clear which combinations of ß-catenin-interacting proteins form discrete complexes. We have generated a novel antibody, termed 4B3, which recognizes only a small subset of total cellular ß-catenin. Affinity proteomics using 4B3, in combination with subcellular fractionation, has allowed us to define a discrete trimeric complex of ß-catenin, α-catenin and the tumor suppressor APC, which forms in the cytoplasm in response to Wnt signaling. Depletion of the limiting component of this complex, APC, implicates the complex in mediating Wnt-induced changes in cell-cell adhesion. APC is also essential for N-terminal phosphorylation of ß-catenin within this complex. Each component of ß-catenin/APC/α-catenin complex co-exists in other protein complexes, thus use of a selective antibody for affinity proteomics has allowed us to go beyond the generation of a list of potential ß-catenin-interacting proteins, and define when and where a specific complex forms.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Anticorpos Monoclonais/biossíntese , alfa Catenina/metabolismo , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Adesão Celular , Fracionamento Celular , Linhagem Celular , Cromatografia de Afinidade , Cromatografia Líquida , Humanos , Camundongos , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteômica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9/citologia , Células Sf9/metabolismo , Spodoptera , Espectrometria de Massas em Tandem , Via de Sinalização Wnt , alfa Catenina/química , alfa Catenina/genética , beta Catenina/química , beta Catenina/genética
14.
Exp Cell Res ; 317(19): 2748-58, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21884696

RESUMO

In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the ß-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of ß-catenin is contrasted with roles for phospho-ß-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and ß-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stem cell localization and crypt fission are considered.


Assuntos
Carcinoma/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Via de Sinalização Wnt/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/fisiologia , Animais , Carcinoma/metabolismo , Carcinoma/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Modelos Biológicos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/fisiologia
15.
Cancer Res ; 71(10): 3709-19, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21558389

RESUMO

Studies employing mouse models have identified crypt base and position +4 cells as strong candidates for intestinal epithelial stem cells. Equivalent cell populations are thought to exist in the human intestine; however robust and specific protein markers are lacking. Here, we show that in the human small and large intestine, PHLDA1 is expressed in discrete crypt base and some position +4 cells. In small adenomas, PHLDA1 was expressed in a subset of undifferentiated and predominantly Ki-67-negative neoplastic cells, suggesting that a basic hierarchy of differentiation is retained in early tumorigenesis. In large adenomas, carcinomas, and metastases PHLDA1 expression became widespread, with increased expression and nuclear localization at invasive margins. siRNA-mediated suppression of PHLDA1 in colon cancer cells inhibited migration and anchorage-independent growth in vitro and tumor growth in vivo. The integrins ITGA2 and ITGA6 were downregulated in response to PHLDA1 suppression, and accordingly cell adhesion to laminin and collagen was significantly reduced. We conclude that PHLDA1 is a putative epithelial stem cell marker in the human small and large intestine and contributes to migration and proliferation in colon cancer cells.


Assuntos
Células Epiteliais/citologia , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Integrina alfa2/metabolismo , Integrina alfa6/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Células-Tronco/citologia
16.
PLoS One ; 5(11): e14127, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152425

RESUMO

BACKGROUND: The APC tumour suppressor functions in several cellular processes including the regulation of ß-catenin in Wnt signalling and in cell adhesion and migration. FINDINGS: In this study, we establish that in epithelial cells N-terminally phosphorylated ß-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated ß-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions. We isolated APC-rich protrusions from stimulated cells and detected ß-catenin, GSK3ß and CK1α, but not axin. The APC/phospho-ß-catenin complex in cell protrusions appears to be distinct from the APC/axin/ß-catenin destruction complex. GSK3ß phosphorylates the APC-associated population of ß-catenin, but not the cell junction population. ß-catenin associated with APC is rapidly phosphorylated and dephosphorylated. HGF and wound-induced cell migration promote the localised accumulation of APC and phosphorylated ß-catenin at the leading edge of migrating cells. APC siRNA and analysis of colon cancer cell lines show that functional APC is required for localised phospho-ß-catenin accumulation in cell protrusions. CONCLUSIONS: We conclude that N-terminal phosphorylation of ß-catenin does not necessarily lead to its degradation but instead marks distinct functions, such as cell migration and/or adhesion processes. Localised regulation of APC-phospho-ß-catenin complexes may contribute to the tumour suppressor activity of APC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Caderinas/metabolismo , Junções Intercelulares/metabolismo , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Caderinas/genética , Caseína Quinase I/metabolismo , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Cães , Células Epiteliais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HCT116 , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Pseudópodes/metabolismo , Interferência de RNA , beta Catenina/genética
17.
PLoS Genet ; 6(1): e1000816, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20084116

RESUMO

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Assuntos
Camundongos/genética , Camundongos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos/embriologia , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Wnt , Proteína Wnt3 , beta Catenina/genética
18.
Methods Mol Biol ; 468: 263-73, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19099262

RESUMO

Cells in tissues do not exist as isolated entities but are part of the three-dimensional tissue architecture. Consequently, some aspects of cell behaviour cannot be mimicked by simple in vitro monolayer culture systems. Moreover, cell shape and behaviour is not rigid but is dynamic and can be regulated by intrinsic and extrinsic factors. For example, tumour cells in epithelium-derived cancer such as colorectal cancer often retain significant features of the colonic mucosa. However, as the tumour progresses, the morphology of the tumour cells often undergoes a transition from an epithelial morphology to a mesenchymal morphology. This transition is important as it signifies a change in the tumour phenotype to a more aggressive, invasive, and eventually metastatic phenotype. In vitro models that allow the study of this transition are needed. One such model is the LIM1863 colon carcinoma cells that normally grow as organoids but can be adapted to efficiently undergo an epithelial to mesenchymal transition that can be reversed. This system has allowed the study of the genes such as Frizzled 7 that are involved in this dynamic and reversible epithelial to mesenchymal transition.


Assuntos
Técnicas de Cultura de Células , Neoplasias Colorretais , Receptores Frizzled/metabolismo , Organoides/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Receptores Frizzled/genética , Técnicas de Transferência de Genes , Humanos , Morfogênese , Organoides/citologia , Retroviridae/genética , Retroviridae/metabolismo , Proteínas Wnt/genética
19.
Cells Tissues Organs ; 185(1-3): 20-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17587804

RESUMO

Developmental morphogenesis relies on cell transitions between epithelial and mesenchymal states. Colorectal cancer (CRC) progression can also be described as 'morphogenesis' as it involves epithelial-mesenchymal transition (EMT), whereby tumour cells become more invasive and metastatic. Subsequently, the disseminated tumour cells must undergo a reverse transition (MET), as the pathology of most primary tumours is re-capitulated by their established metastases. Disseminated tumour cells can remain 'dormant' for many years. Consequently, tumour initiation at the secondary site is the rate-limiting step in metastasis. Metastasis is governed by cell intrinsic and extrinsic (microenvironment) factors, thus much of what we know about metastasis is drawn from in vivo model systems. However, the molecular mechanisms controlling release from 'dormancy' are still largely unknown due to the complexity this presents for the in vivo situation. An in vitro morphogenesis culture system would present a great advantage. To this end, we have established a unique model of CRC morphogenesis, using a variant of the human cell line LIM1863 (LIM1863-Mph). In this model system LIM1863-Mph cells show plasticity between epithelial and mesenchymal states. The transitions are reversible and bear the phenotypic hallmarks of CRC morphogenesis. Importantly, we have demonstrated a pivotal role for FZD7 in these phenotype transitions, implicating Wnt signalling in orchestrating CRC morphogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Epitélio/metabolismo , Mesoderma/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/ultraestrutura , Citocinas/farmacologia , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mesoderma/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo
20.
Carcinogenesis ; 27(4): 708-16, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16299383

RESUMO

Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.


Assuntos
Adenoma/genética , Neoplasias do Colo/genética , Receptores de Neurotensina/biossíntese , Fatores de Transcrição TCF/fisiologia , beta Catenina/fisiologia , Adenoma/fisiopatologia , Proteína da Polipose Adenomatosa do Colo/fisiologia , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica , Neoplasias do Colo/fisiopatologia , Humanos , Perda de Heterozigosidade , Regiões Promotoras Genéticas , Receptores de Neurotensina/fisiologia , Transdução de Sinais , Regulação para Cima , Proteínas Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA