Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259304

RESUMO

An active fraction of S. crispus, F3, and its bioactive compounds (lutein, ß-sitosterol, and stigmasterol) were reported to have anti-glycolytic activities in MDA-MB-231 cells. Since glycolysis can also regulate metastatic activities in cancer cells, this study investigated the mechanism underlying the anti-glycolytic and anti-metastatic activities induced by F3 and its bioactive compounds on MDA-MB-231 cells. The cells were treated with IC50 concentrations of F3, lutein, ß-sitosterol, and stigmasterol. GLUT1 protein expression and localization were then observed using a fluorescence microscope. We found that F3, lutein, and ß-sitosterol inhibit localization of GLUT1 to the cell membrane, which causes the decrease in glucose uptake. This is supported by a reduction in PKC activity, measured using a spectrophotometer, and increased TXNIP protein expression detected by Western blotting. Both TXNIP and PKC are involved in GLUT1 activation and localization. The expression of signaling proteins involved in the PI3K/AKT pathway was also measured using a flow cytometer. Results show that F3, lutein, ß-sitosterol, and stigmasterol reduced the expression of AKT, pAKT, mTOR, and HIF1α in MDA-MB-231 cells. Transwell migration assay was used to measure migration of the MDA-MB-231 cells. A reduction in fibronectin protein expression was observed by fluorescence microscopy, after treatments with F3 and its bioactive compounds, leading to a reduction in the MDA-MB-231 cells' migratory abilities. As a conclusion, F3 acts as a metabolic inhibitor by inhibiting metabolic rewiring in the promotion of cancer metastasis, potentially due to the presence of its bioactive compounds.

2.
Biomed Res Int ; 2021: 5125681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631882

RESUMO

Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Química Verde , Luffa/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Bactérias/efeitos dos fármacos , Benzotiazóis/química , Compostos de Bifenilo/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cor , Humanos , Ligantes , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Picratos/química , Extratos Vegetais/química , Folhas de Planta/química , Relação Quantitativa Estrutura-Atividade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Sulfônicos/química , Testes de Toxicidade , Difração de Raios X
3.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207699

RESUMO

Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.


Assuntos
Desoxiglucose/farmacologia , Garcinia/química , Óleos Voláteis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Folhas de Planta/química
4.
Asian Pac J Cancer Prev ; 22(S1): 59-65, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576213

RESUMO

OBJECTIVE: The persistent activation of aerobic glycolysis in cancer cells results in accumulation of lactate and other metabolic intermediates that contribute to tumorigenesis. Increased glycolysis is frequently dysregulated in triple-negative breast cancer (TNBC), which promotes tumor growth and immune escape. This study was conducted to investigate the effect of 2-methoxy-1, 4-naphthoquinone (MNQ), compound extracted from Impatiens balsamina on glycolytic activities in human breast adenocarcinoma, MDA-MB-231 cells. METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt). RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway. CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.


Assuntos
Antineoplásicos/farmacologia , Glucose/metabolismo , Glicólise , Ácido Láctico/metabolismo , Naftoquinonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sobrevivência Celular , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
5.
Food Chem Toxicol ; 49(4): 871-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21167897

RESUMO

Honey is reported to contain various compounds such as phenols, vitamins and antioxidants. The present study investigates the anticancer potential of Tualang honey (Agromas) (TH) in human breast (MCF-7 and MDA-MB-231) and cervical (HeLa) cancer cell lines; as well as in the normal breast epithelial cell line, MCF-10A. The cells were treated with increasing doses of TH (1-10%) for up to 72 h. Increase in lactate dehydrogenase (LDH) leakage from the cell membranes indicates that TH is cytotoxic to all three cancer cells with effective concentrations (EC(50)) of 2.4-2.8%. TH is however, not cytotoxic to the MCF-10A cells. Reactivity with annexin V fluorescence antibody and propidium iodide as analysed by flow cytometry and fluorescence microscopy shows that apoptosis occurred in these cancer cells. TH also reduced the mitochondrial membrane potential (Δψ(m)) in the cancer cell lines after 24h of treatment. The activation of caspase-3/7 and -9 was observed in all TH-treated cancer cells indicating the involvement of mitochondrial apoptotic pathway. This study shows that TH has significant anticancer activity against human breast and cervical cancer cell lines.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Mel , Potenciais da Membrana , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA