Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ChemSusChem ; 15(19): e202200916, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880580

RESUMO

The transition from batch catalytic processes to continuous flow processes requires highly active and stable catalysts that still need to be developed. The preparation and characterization of catalysts where palladium single atoms and nanoparticles are simultaneously present on carbon nanotubes were recently reported by us. These catalysts are considerably more active than commercial or previously described catalysts for the liquid phase hydrogenation of terpenes. Herein is shown that under solvent-free conditions, squalene (SQE) could be converted into squalane (SQA,>98 %) using only 300 ppm of Pd in less than 1.4 h at 20 bar H2 and 120 °C. Catalyst stability was assessed in a lab-scale flow reactor, and long-term experiments led to turnover number (TON) higher than 300000 without any detectable loss in the activity. Then, the implementation of this catalyst in a commercial intensified continuous-flow milli-reactor pilot was achieved. High purity SQA (>98 %) could be obtained by continuous hydrogenation of solvent-free SQE at 180 °C and 30 bar H2 with a contact time below 15 min. A production capacity of 3.6 kg per day of SQA could be obtained with an effective reactor volume (VR ) of 43.2 mL for this complex 3 phase reaction. Large-scale production can now be foreseen thanks to seamless scale-up provided by the continuous flow pilot supplier.


Assuntos
Nanotubos de Carbono , Paládio , Catálise , Hidrogenação , Solventes , Esqualeno
3.
Org Lett ; 21(24): 10134-10138, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31808703

RESUMO

The organocatalyzed aerobic oxidation of aldehydes to acids was reproduced from the original report. In- and ex-situ analysis of the reaction mixture as the function of time reveals that, unlike the claim in the publication, the aerobic oxidation of aromatic and aliphatic aldehydes leads predominantly to the formation of peracids. The latter are transformed into the corresponding carboxylic acids during the workup procedure. The buildup of peracids in solution poses safety problems that should not be overlooked. This finding has also an influence on the way new catalysts are investigated to improve this reaction as well as on aerobic aldehyde-mediated co-oxidation.

4.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309022

RESUMO

A selective acylation protocol using cerium chloride (CeCl3) as catalyst was applied to functionalize silybinin (1), a natural antioxidant flavonolignan from milk thistle fruit, in order to increase its solubility in lipophilic media while retaining its strong antioxidant activity. The selective esterification of 1 at the position 3-OH with a palmitate acyl chain leading to the formation of the 3-O-palmitoyl-silybin (2) was confirmed by both mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. The antioxidant activity of 1 was at least retained and even increased with the CUPRAC assay designed to estimate the antioxidant activity of both hydrophilic and lipophilic compounds. Finally, the 3-O-palmitoylation of 1, resulting in the formation of 2, also increased its anti-lipoperoxidant activity (i.e., inhibition of conjugated diene production) in two different lipophilic media (bulk oil and o/w emulsion) subjected to accelerated storage test.


Assuntos
Lipídeos/química , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Silibina/síntese química , Silibina/farmacologia , Sequestradores de Radicais Livres/química , Peroxidação de Lipídeos , Espectroscopia de Prótons por Ressonância Magnética , Silibina/química , Espectrometria de Massas por Ionização por Electrospray
5.
J Photochem Photobiol B ; 167: 216-227, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28088102

RESUMO

Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m2) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-ß-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures.


Assuntos
Linho/metabolismo , Lignanas/biossíntese , Fotoperíodo , Raios Ultravioleta , Antioxidantes/metabolismo , Biomassa , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Flavonoides/metabolismo , Linho/citologia , Fenóis/metabolismo
6.
Org Lett ; 15(23): 5978-81, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24266859

RESUMO

A safe, straightforward, and atom economic approach for the oxidation of aliphatic aldehydes to the corresponding carboxylic acids within a continuous flow reactor is reported. Typically, the reaction is performed at room temperature using 5 bar of oxygen in PFA tubing and does require neither additional catalysts nor radical initiators except for those already contained in the starting materials. In some cases, a catalytic amount of a Mn(II) catalyst is added. Such a flow process may prove to be a valuable alternative to traditionally catalyzed aerobic processes.

7.
Bioresour Technol ; 101(18): 6973-82, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20452205

RESUMO

Olive oil mill wastewater (OMWW) generated by the olive oil extraction industry constitutes a major pollutant, causing a severe environmental threats because of the high chemical oxygen demand and the high content of polyphenol. This work studied a combined process of absorption on sawdust, a low-cost renewable absorbents, and an energetic valorisation via combustion was studied. The thermal behaviour of different OMWW/sawdust blends was studied under inert and oxidative atmosphere from 20 to 900 degrees C using thermogravimetric analysis (TGA). Gaseous emissions such as CO(2), CO and volatile organic compounds (VOCs) were measured under oxidative conditions at 600 degrees C in a fixed-bed reactor. Kinetic parameters were obtained and compared for the different mixtures of OMWW and sawdust. The absorption of the organic content of OMWW on sawdust improves the decomposition of cellulosic compounds at low temperatures in both atmospheres. Compared to sawdust, absorption of the organic content of OMWW on sawdust favours a combustion process with lower molar ratio of CO/CO(2) in the exhaust. Combustion of an impregnated sawdust containing 40 wt.% of the organic content of the OMWW generates the same amount of gas in the exhaust as sawdust. OMWW/sawdust blends may therefore be a promising biofuel with low environmental impacts.


Assuntos
Temperatura Alta , Resíduos Industriais/prevenção & controle , Óleos de Plantas/química , Ultrafiltração/métodos , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Madeira/química , Absorção , Azeite de Oliva
8.
J Steroid Biochem Mol Biol ; 114(1-2): 57-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19167490

RESUMO

Cytochrome P4507B1 7alpha-hydroxylates dehydroepiandrosterone (DHEA), epiandrosterone (EpiA) and 5alpha-androstane-3beta,17beta-diol (Adiol). 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts 7alpha- and 7beta-forms. Whether the interconversion proceeds through oxido-reductive steps or epimerase activity was investigated. Experiments using [(3)H]-labelled 7beta-hydroxy-DHEA, 7beta-hydroxy-EpiA and 7beta-hydroxy-Adiol showed the (3)H-label to accumulate in the 7-oxo-DHEA trap but not in 7-oxo-EpiA or 7-oxo-Adiol traps. Computed models of 7-oxygenated steroids docked in the active site of 11beta-HSD1 either in a flipped or turned form relative to cortisone and cortisol. 7-Oxo-steroid reduction in 7alpha- or 7beta-hydroxylated derivatives resulted from either turned or flipped forms. 11beta-HSD1 incubation in H(2)(18)O medium with each 7-hydroxysteroid did not incorporate (18)O in 7-hydroxylated derivatives of EpiA and Adiol independently of the cofactor used. Thus oxido-reductive steps apply for the interconversion of 7alpha- and 7beta-hydroxy-DHEA through 7-oxo-DHEA. Epimerization may proceed on the 7-hydroxylated derivatives of EpiA and Adiol through a mechanism involving the cofactor and Ser(170). The physiopathological importance of this epimerization process is related to 7beta-hydroxy-EpiA production and its effects in triggering the resolution of inflammation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Esteroide Hidroxilases/metabolismo , Esteroides , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Androstano-3,17-diol/química , Androstano-3,17-diol/metabolismo , Androsterona/química , Androsterona/metabolismo , Domínio Catalítico , Família 7 do Citocromo P450 , Desidroepiandrosterona/química , Desidroepiandrosterona/metabolismo , Humanos , Hidroxilação , Estrutura Molecular , Oxirredução , Esteroide Hidroxilases/genética , Esteroides/química , Esteroides/metabolismo
10.
Talanta ; 63(3): 803-6, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18969503

RESUMO

Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA