Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(1): 4-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199175

RESUMO

A significant amount of waste is annually generated worldwide by the supply chain of the food industry. Considering the population growth, the environmental concerns, and the economic opportunities, waste recovery is a promising solution to produce valuable and innovative ingredients for food and nonfood industries. Indeed, plant-based wastes are rich in dietary fibers (DF), which have relevant technical functionalities such as water/oil holding capacity, swelling capacity, viscosity, texture, and physiological properties such as antioxidant activity, cholesterol, and glucose adsorption capacities. Different drying technologies could be applied to extend the shelf life of fresh DF. However, inappropriate drying technologies or process conditions could adversely affect the functionalities of DF via the hornification phenomenon. Hornification is related to the formation of irreversible hydrogen bindings, van der Waals interactions, and covalent lactone bridges between cellulose fibrils during drying. This review aims to capitalize on the knowledge developed in the wood industry to tackle the hornification phenomenon occurring in the food industry. The mechanisms and the parameters affecting hornification as well as the mitigation strategies used in the wood industry that could be successfully applied to foods are summarized. The application of conventional drying technologies such as air or spray-drying increased the occurrence of hornification. In contrast, solvent exchange, supercritical drying, freeze-drying, and spray-freeze-drying approaches were considered effective strategies to limit the consequences of this phenomenon. In addition, incorporating capping agents before drying attenuated the hornification. The knowledge summarized in this review can be used as a basis for process design in the valorization of plant-based wastes and the production of functional DF that present relevant features for the food and packaging industries.


Assuntos
Eliminação de Resíduos , Madeira , Fibras na Dieta , Dessecação , Indústria Alimentícia
2.
J Food Sci Technol ; 59(5): 1994-2003, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531400

RESUMO

In current study, oleogel containing surface-active (sodium caseinate) and non-surface active biopolymers (xanthan gum) prepared in different concentrations through emulsion template (containing 60% canola oil) and dried by freeze-drying. Results showed that biopolymer content affects the oleogel structure: applying the biopolymer combination with increased concentration mainly sodium caseinate, resulted in lower droplet size in emulsions and obtained oleogels with higher firmness and less oil loss. Therefore, samples containing 4% sodium caseinate with 0.2% and 0.4% xanthan were selected as the superior formulas for examining deeply the drying methods' effects (freeze and vacuum-oven drying) on oleogel's physicochemical properties such as hardness, rheology, XRD, color, and oxidative stability. Freeze-drying with higher content of xanthan (0.4% w/w) generated a high mechanical strength oleogel. However, reducing xanthan concentration (0.2% w/w) reduced the gel strength, probably due to not enough viscoelasticity in oil droplets interface. Nevertheless, the charm of freeze-drying method is high-quality dried products in optimized biopolymer concentration due to the water removal by sublimation of ice crystals. Contrariwise, vacuum-oven revealed soft-discolored materials even in high biopolymers concentrations due to the higher temperature and structural collapse. Independence of biopolymer concentration and drying method, no significant difference in XRD patterns, and oxidative stability was observed. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05214-1.

3.
Compr Rev Food Sci Food Saf ; 21(3): 2149-2199, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604058

RESUMO

Plant food wastes generated through the food chain have attracted increasing attention over the last few years not only due to critical environmental and economic issues but also as an available source of valuable components such as dietary fibers. However, the exploitation of plant waste remains limited due to the lack of appropriate processing technologies to recover and tailor fiber functionalities. Among the different technologies developed for waste valorization, mechanical techniques were suggested to be a promising and sustainable strategy to extract fibers with improved functionalities. In this context, the present review describes different mechanical technologies (conventional and innovative) with potential applications to produce micro/nanofibers from various plant residues, highlighting the operating principle as well as the main advantages and pitfalls. The impact on the structural, technological, and functional properties of fibrous materials is comprehensively discussed. The extent of fiber modification not only highly depended on the technology and operation conditions used but also on fiber composition and the application of posttreatments such as dehydration. Other variables, including economic and environmental issues such as equipment cost, energy demand, and eco-friendly features, are also reviewed. The outputs of this review can be used by both the industrial sector and academia to select a suitable combination of fiber and processing technology for designing novel foods with improved functionalities that fulfill market trends and consumer needs.


Assuntos
Fibras na Dieta , Extratos Vegetais , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA