Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160941

RESUMO

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Interleucina-10 , Neoplasias Hepáticas/patologia , Receptores de Interleucina-10 , Microambiente Tumoral
2.
Nat Commun ; 13(1): 6266, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271073

RESUMO

Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.


Assuntos
DNA Metiltransferase 3A , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Mucosa Intestinal/metabolismo , Colo/patologia , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Fatores de Necrose Tumoral/metabolismo , DNA/metabolismo
3.
Gut ; 71(11): 2194-2204, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35264446

RESUMO

OBJECTIVE: One of the current hypotheses to explain the proinflammatory immune response in IBD is a dysregulated T cell reaction to yet unknown intestinal antigens. As such, it may be possible to identify disease-associated T cell clonotypes by analysing the peripheral and intestinal T-cell receptor (TCR) repertoire of patients with IBD and controls. DESIGN: We performed bulk TCR repertoire profiling of both the TCR alpha and beta chains using high-throughput sequencing in peripheral blood samples of a total of 244 patients with IBD and healthy controls as well as from matched blood and intestinal tissue of 59 patients with IBD and disease controls. We further characterised specific T cell clonotypes via single-cell RNAseq. RESULTS: We identified a group of clonotypes, characterised by semi-invariant TCR alpha chains, to be significantly enriched in the blood of patients with Crohn's disease (CD) and particularly expanded in the CD8+ T cell population. Single-cell RNAseq data showed an innate-like phenotype of these cells, with a comparable gene expression to unconventional T cells such as mucosal associated invariant T and natural killer T (NKT) cells, but with distinct TCRs. CONCLUSIONS: We identified and characterised a subpopulation of unconventional Crohn-associated invariant T (CAIT) cells. Multiple evidence suggests these cells to be part of the NKT type II population. The potential implications of this population for CD or a subset thereof remain to be elucidated, and the immunophenotype and antigen reactivity of CAIT cells need further investigations in future studies.


Assuntos
Doença de Crohn , Células T Matadoras Naturais , Linfócitos T CD8-Positivos , Doença de Crohn/genética , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
4.
Cell Metab ; 33(12): 2355-2366.e8, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34847376

RESUMO

Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2ΔIEC). Hk2ΔIEC mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2ΔIEC mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2ΔIEC mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.


Assuntos
Colite , Hexoquinase , Animais , Células CACO-2 , Morte Celular/fisiologia , Colite/metabolismo , Colite/microbiologia , Células Epiteliais/metabolismo , Hexoquinase/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo
5.
Cell Metab ; 32(4): 509-511, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027672

RESUMO

The exact principles guiding host-microbe homeostasis in the intestinal tract remain obscure. In a recent issue of Nature, Wu et al. (2020) describe that bacterial-derived inositols are an important principle that shapes regenerative properties of the colonic epithelium. The metabolites activate HDAC3, which represents an important part of the epigenetic machinery.


Assuntos
Microbioma Gastrointestinal , Bactérias , Homeostase , Inositol , Mucosa Intestinal
6.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
7.
EMBO J ; 38(20): e101266, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544965

RESUMO

Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL-1ß by proteolytic cleavage via caspase-1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome-dependent immune responses remain poorly defined. Here, we show that the thiol-specific peroxidase peroxiredoxin-4 (Prdx4) directly regulates IL-1ß generation by interfering with caspase-1 activity. We demonstrate that caspase-1 and Prdx4 form a redox-sensitive regulatory complex via caspase-1 cysteine 397 that leads to caspase-1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS-induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4-ΔLysMCre). Strikingly, we demonstrate that Prdx4 co-localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome-activated macrophages. Purified EVs are able to transmit a robust IL-1ß-dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro-inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell-to-cell communication function of inflammasomes via macrophage-derived EVs.


Assuntos
Caspase 1/metabolismo , Vesículas Extracelulares/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Peroxirredoxinas/fisiologia , Choque Séptico/prevenção & controle , Animais , Caspase 1/genética , Citocinas/metabolismo , Feminino , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Transdução de Sinais
8.
Genome Med ; 10(1): 27, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653584

RESUMO

BACKGROUND: The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development. METHODS: We collected IECs from the small intestine of each of five 1-, 4- and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation. RESULTS: We found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent "functional" methylation sites which may impact on long-term gene expression signatures in IECs. CONCLUSIONS: Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.


Assuntos
Metilação de DNA/genética , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/citologia , Transcriptoma/genética , Animais , Feminino , Loci Gênicos , Crescimento e Desenvolvimento/genética , Camundongos Endogâmicos C57BL , RNA/genética , Transcrição Gênica
9.
Cell Physiol Biochem ; 37(6): 2355-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26646161

RESUMO

BACKGROUND: The P-glycoprotein inhibitor zosuquidar (LY335979) is clinically used to augment the effect of cytostatic drugs on suicidal tumor cell death or apoptosis. The present study explored whether the substance is cytotoxic to erythrocytes. Upon injury, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), oxidative stress and activation of several kinases, such as p38 kinase and protein kinase C. METHODS: Phosphatidylserine abundance at the erythrocyte surface was quantified from binding of FITC-labelled annexin-V, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. RESULTS: A 48 h treatment of human erythrocytes with zosuquidar significantly increased the percentage of annexin-V-binding cells (2 and 4 µg/ml), significantly decreased forward scatter (4 µg/ml), significantly increased [Ca2+]i (4 µg/ml), but did not significantly modify ROS. The up-regulation of annexin-V-binding following zosuquidar (4 µg/ml) treatment was significantly blunted by removal of extracellular Ca2+, by presence of p38 kinase inhibitor SB203580 (2 µM) and by presence of protein kinase C inhibitor calphostin (100 nM). CONCLUSIONS: Exposure of erythrocytes to zosuquidar triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect involving Ca2+ entry and requiring activity of SB203580 and calphostin sensitive kinases.


Assuntos
Morte Celular/efeitos dos fármacos , Dibenzocicloeptenos/farmacologia , Eritrócitos/efeitos dos fármacos , Quinolinas/farmacologia , Cálcio/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Fluorescência , Humanos , Técnicas In Vitro
10.
Cell Physiol Biochem ; 37(6): 2393-404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26646579

RESUMO

BACKGROUND/AIMS: The alkylating drug oxaliplatin is widely used for chemotherapy of malignancy. Oxaliplatin is effective by inducing both, necrosis and apoptosis. Similar to necrosis or apoptosis of nucleated cells, erythrocytes may enter hemolysis, which is apparent from hemoglobin release or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and/or Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether and how oxaliplatin induces eryptosis. METHODS: Phosphatidylserine exposure at the cell surface was quantified utilizing annexin-V-binding, cell volume estimated from forward scatter, hemolysis deduced from hemoglobin release, [Ca2+]i determined utilizing Fluo-3 fluorescence, and reactive oxygen species (ROS) abundance visualized using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. RESULTS: A 48 hours exposure of human erythrocytes to oxaliplatin (10 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo-3 fluorescence, and significantly increased DCFDA fluorescence. The effect of oxaliplatin on annexin-V-binding and forward scatter was rather augmented by removal of extracellular Ca2+, but was significantly blunted in the presence of the antioxidant N-acetyl-cysteine (1 mM). CONCLUSIONS: Oxaliplatin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect partially dependent on ROS formation.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Cálcio/metabolismo , Eritrócitos/metabolismo , Humanos , Técnicas In Vitro , Transporte de Íons , Oxaliplatina , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Cell Physiol Biochem ; 37(6): 2221-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618532

RESUMO

BACKGROUND/AIMS: The anti-inflammatory, anti-autoimmune, antiparasitic, and anti-viral ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) stimulates apoptosis of tumor cells and is thus considered for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i) and oxidative stress. The present study explored, whether and how edelfosine induces eryptosis. METHODS: Flow cytometry and photometry, respectively, were employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. RESULTS: A 6 hours exposure of human erythrocytes to edelfosine (5 µM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence. The effect of edelfosine on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. CONCLUSIONS: Edelfosine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


Assuntos
Apoptose/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Éteres Fosfolipídicos/farmacologia , Cálcio/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
Cell Physiol Biochem ; 37(2): 768-78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356267

RESUMO

BACKGROUND/AIMS: The JAK1/JAK2 tyrosine kinase inhibitor ruxolitinib is widely used for the treatment of myeloproliferative neoplasm-associated myelofibrosis and other malignancies. Most important side effects include anemia. A common cause of anemia is accelerated suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Mechanisms contributing to the triggering of eryptosis include oxidative stress, Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), and activation of distinct kinases, such as p38 mitogen activated protein (MAP) kinase. The present study explored whether and how ruxolitinib induces eryptosis. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from DCFDA dependent fluorescence. RESULTS: A 48 hours exposure of human erythrocytes to ruxolitinib (25 µM) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Ruxolitinib did not significantly modify Fluo3-fluorescence and DCFDA fluorescence and the effect of ruxolitinib on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. The effect of ruxolitinib on annexin-V-binding was, however, significantly blunted by the p38 MAP kinase inhibitor SB203580 and virtually abolished by the p38 MAP kinase inhibitor skepinone. CONCLUSION: Ruxolitinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part requiring p38 MAP kinase activity.


Assuntos
Eritrócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pirazóis/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Eritrócitos/citologia , Humanos , Imidazóis/farmacologia , Nitrilas , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Piridinas/farmacologia , Pirimidinas
13.
Cell Physiol Biochem ; 37(2): 805-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356270

RESUMO

BACKGROUND/AIMS: The benzophenone garcinol from dried fruit rind of Garcinia indica counteracts malignancy, an effect at least in part due to stimulation of apoptosis. The proapototic effect of garcinol is attributed in part to inhibition of histone acetyltransferases and thus modification of gene expression. Moreover, garcinol triggers mitochondrial depolarisation. Erythrocytes lack gene expression and mitochondria but are nevertheless able to enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, energy depletion and Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether and how garcinol induces eryptosis. METHODS: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and cytosolic ATP levels utilizing a luciferin-luciferase-based assay. RESULTS: A 24 hours exposure of human erythrocytes to garcinol (2.5 or 5 µM) significantly increased the percentage of annexin-V-binding cells. Garcinol decreased (at 1 µM and 2.5 µM) or increased (at 5 µM) forward scatter. Garcinol (5 µM) further increased Fluo3-fluorescence, increased DCFDA fluorescence, and decreased cytosolic ATP levels. The effect of garcinol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. CONCLUSIONS: Garcinol triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation, energy depletion and Ca2+ entry.


Assuntos
Tamanho Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Terpenos/farmacologia , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Humanos , Estresse Oxidativo , Fosfolipídeos
14.
Toxins (Basel) ; 7(8): 2822-34, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26226001

RESUMO

The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 mg/mL), significantly decreased forward scatter (≥25 mg/mL), significantly increased [Ca2+]i (≥25 mg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 mM) and slightly decreased by p38 inhibitor skepinone (2 mM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.


Assuntos
Cantaridina/toxicidade , Eritrócitos/efeitos dos fármacos , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ceramidas/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA