Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38495771

RESUMO

Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces. Specifically, this paper describes how UEGs are enabled by innovatively modifying the surfaces of the glass with light scattering particles. Modification of glass surface with silica nanoparticles at a concentration 26.5 µg/cm2 resulted in over ten-fold increase in UV irradiance, while maintaining satisfactory visible and IR transparency metrics of over 99 %. The UEG reduced visible biological growth by 98 % and resulted in a decrease of 1.79 log in detected colony forming units when compared to the control during a 20 day submersion at Port Canaveral, Florida, United States. These findings serve as strong evidence that UV emitting glass should be explored as a promising approach for biofilm inhibition on transparent surfaces.

2.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289032

RESUMO

Microbial growth on surfaces poses health concerns and can accelerate the biodegradation of engineered materials and coatings. Cyclic peptides are promising agents to combat biofouling because they are more resistant to enzymatic degradation than their linear counterparts. They can also be designed to interact with extracellular targets and intracellular targets and/or self-assemble into transmembrane pores. Here, we determine the antimicrobial efficacy of two pore-forming cyclic peptides, α-K3W3 and ß-K3W3, against bacterial and fungal liquid cultures and their capacity to inhibit biofilm formation on coated surfaces. These peptides display identical sequences, but the additional methylene group in the peptide backbone of ß-amino acids results in a larger diameter and an enhancement in the dipole moment. In liquid cultures, ß-K3W3 exhibited lower minimum inhibitory concentration values and greater microbicidal power in reducing the number of colony forming units (CFUs) when exposed to a gram-positive bacterium, Staphylococcus aureus, and two fungal strains, Naganishia albida and Papiliotrema laurentii. To evaluate the efficacy against the formation of fungal biofilms on painted surfaces, cyclic peptides were incorporated into polyester-based thermoplastic polyurethane. The formation of N. albida and P. laurentii microcolonies (105 per inoculation) for cells extracted from coatings containing either peptide could not be detected after a 7-day exposure. Moreover, very few CFUs (∼5) formed after 35 days of repeated depositions of freshly cultured P. laurentii every 7 days. In contrast, the number of CFUs for cells extracted from the coating without cyclic peptides was >8 log CFU.


Assuntos
Anti-Infecciosos , Poliuretanos , Poliuretanos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Anti-Infecciosos/farmacologia , Biofilmes , Peptídeos , Peptídeos Cíclicos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Soft Matter ; 19(23): 4254-4264, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249466

RESUMO

Nature employs protein aggregates when strong materials are needed to adhere surfaces in extreme environments, allowing organisms to survive conditions ranging from harsh intertidal coasts to open oceans. Amyloids and amyloid-like materials are prevalent and amongst the most densely bonded aggregate structures, though how they contribute to wet adhesion is not well understood. In this work, waterborne protein solutions of individual whey proteins are cured in place using varied temperature to produce model adhesives enriched in amyloid or non-amyloid aggregates. Dry adhesive strengths range from 0.2-1.5 MPa, while wet adhesive strengths range from 0-0.5 MPa across the tested proteins and processing conditions, highlighting that both proper protein selection and controlled aggregation extent are necessary for successful underwater performance. For bovine serum albumin, the amyloid-enriched adhesive was able to retain ca. 500 kPa bond strength underwater throughout extended immersion and thermal degradation testing, while the non-amyloid adhesive weakened by up to 80%. As freestanding gels, higher temperature processing improved underwater stability for all the protein materials, with amyloid-rich structures remaining mostly water-insoluble after 30 days submerged in water. Protein-based adhesives with a controlled aggregate structure shed light on the ability of amyloid-containing materials to remain adhered underwater, a necessary trait for the survival of many organisms.


Assuntos
Adesivos , Thoracica , Animais , Adesivos/química , Agregados Proteicos , Amiloide , Água/química
4.
ACS Biomater Sci Eng ; 9(1): 246-256, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542483

RESUMO

Biomaterials are an important source of inspiration for the development of strong and tough materials. Many improved and optimized synthetic materials have been recently developed utilizing this bioinspiration concept. Using side-chain-to-side-chain polymerization of cyclic ß-peptide rings, a novel class of nanomaterials was recently introduced with outstanding mechanical properties such as toughness values greater than natural silks. In this work, molecular dynamics is used to understand the mechanics of side-chain-to-side-chain polymerization of cyclic ß-peptide rings. Unbiased steered molecular dynamics simulations are used to show the difference in the strength of polymerized and unpolymerized processing of similar cyclic rings. The simulations are performed both in aqueous and vacuum environments to capture the role of water on the mechanical properties of the cyclic peptides. Our results show that unpolymerized peptides behave like brittle material, whereas polymerized ones can withstand some stress after initial failure with large values of strain-to-failure. Finally, we have shown that the strength of cyclic peptides in water is higher than in a vacuum.


Assuntos
Peptídeos Cíclicos , Polímeros , Polímeros/química , Água/química , Peptídeos/química , Materiais Biocompatíveis
5.
J Mater Chem B ; 10(45): 9400-9412, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36285764

RESUMO

Enzyme function relies on the placement of chemistry defined by solvent and self-associative hydrogen bonding displayed by the protein backbone. Amyloids, long-range multi-peptide and -protein materials, can mimic enzyme functions while having a high proportion of stable self-associative backbone hydrogen bonds. Though catalytic amyloid structures have exhibited a degree of temperature and solvent stability, defining their full extremophilic properties and the molecular basis for such extreme activity has yet to be realized. Here we demonstrate that, like thermophilic enzymes, catalytic amyloid activity persists across high temperatures with an optimum activity at 81 °C where they are 30-fold more active than at room temperature. Unlike thermophilic enzymes, catalytic amyloids retain both activity and structure well above 100 °C as well as in the presence of co-solvents. Changes in backbone vibrational states are resolved in situ using non-linear 2D infrared spectroscopy (2DIR) to reveal that activity is sustained by reorganized backbone hydrogen bonds in extreme environments, evidenced by an emergent vibrational mode centered at 1612 cm-1. Restructuring also occurs in organic solvents, and facilitates complete retention of hydrolysis activity in co-solvents of lesser polarity. We support these findings with molecular modeling, where the displacement of water by co-solvents leads to shorter, less competitive, bonding lifetimes that further stabilize self-associative backbone interactions. Our work defines amyloid properties that counter classical proteins, where extreme environments induce mechanisms of restructuring to support enzyme-like functions necessary for synthetic applications.


Assuntos
Extremófilos , Amiloide/química , Ligação de Hidrogênio , Solventes/química , Modelos Moleculares
6.
Biomacromolecules ; 22(2): 365-373, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33135878

RESUMO

Barnacles integrate multiple protein components into distinct amyloid-like nanofibers arranged as a bulk material network for their permanent underwater attachment. The design principle for how chemistry is displayed using adhesive nanomaterials, and fragments of proteins that are responsible for their formation, remains a challenge to assess and is yet to be established. Here, we use engineered bacterial biofilms to display a library of amyloid materials outside of the cell using full-length and subdomain sequences from a major component of the barnacle adhesive. A staggered charged pattern is found throughout the full-length sequence of a 43 kDa cement protein (AACP43), establishing a conserved sequence design evolved by barnacles to make adhesive nanomaterials. AACP43 domain deletions vary in their propensity to aggregate and form fibers, as exported extracellular materials are characterized through staining, immunoblotting, scanning electron microscopy, and atomic force microscopy. Full-length AACP43 and its domains have a propensity to aggregate into nanofibers independent of all other barnacle glue components, shedding light on its function in the barnacle adhesive. Curliated Escherichia coli biofilms are a compatible system for heterologous expression and the study of foreign functional amyloid adhesive materials, used here to identify the c-terminal portion of AACP43 as critical in material formation. This approach allows us to establish a common sequence pattern between two otherwise dissimilar families of cement proteins, laying the foundation to elucidate adhesive chemistries by one of the most tenacious marine fouling organisms in the ocean.


Assuntos
Nanoestruturas , Thoracica , Adesivos , Animais , Biofilmes , Escherichia coli/genética , Thoracica/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190203, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495306

RESUMO

Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na+, Mg2+ and BO43-) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite). Additionally, surface-active glasses formed reaction layers at the glass-water interface, presenting another challenge to fouling organisms. Proteomics analysis showed that cement deposited on the gelatinous reaction layers is more soluble than cement deposited on insoluble glasses, indicating the reaction layer and/or released ions disrupted adhesion processes. Laboratory experiments showed that the majority (greater than 79%) of adult barnacles re-attached to silica-free borate glasses for 14 days could be released and, more importantly, barnacle larvae did not settle on the glasses. The formation of microbial biofilms in field tests diminished the performance of the materials. While periodic water jetting (120 psi) did not prevent the formation of biofilms, weekly cleaning did dramatically reduce macrofouling on magnesium aluminoborate glass to levels below a commercial foul-release coating. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Assuntos
Boratos/química , Magnésio/química , Sódio/química , Thoracica/fisiologia , Animais , Propriedades de Superfície
8.
Integr Biol (Camb) ; 11(5): 235-247, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251329

RESUMO

Successful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.


Assuntos
Adesivos , Teste de Materiais/instrumentação , Proteômica/instrumentação , Proteômica/métodos , Thoracica/fisiologia , Animais , Incrustação Biológica , Carboidratos/química , Biologia Computacional , Estresse Oxidativo , Oxigênio/química , Peptídeos/química , Pressão , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma , Solventes
9.
ACS Nano ; 13(5): 5172-5183, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30986028

RESUMO

The permanent adhesive produced by adult barnacles is held together by tightly folded proteins that form amyloid-like materials distinct among marine foulants. In this work, we link stretches of alternating charged and noncharged linear sequences from a family of adhesive proteins to their role in forming fibrillar nanomaterials. Using recombinant proteins and short barnacle cement derived peptides (BCPs), we find a central sequence with charged motifs of the pattern [Gly/Ser/Val/Thr/Ala-X], where X are charged amino acids, to exert specific control over timing, structure, and morphology of fibril formation. While most BCPs remain dormant, the core segment demonstrates rapid polymerization as well as an ability to template other peptides with no propensity for self-assembly. Patterned charge domains assemble dormant peptides through a specific antiparallel ß-sheet structure as measured by FTIR. While charged domains favor an antiparallel structure, BCPs without charged domains switch fibril assembly to favor simpler parallel ß-sheet aggregates. In addition to activation, charged domains direct nanofibers to grow into discrete microns long fibrils similar to the natural adhesive, while segments without such domains only form short branched aggregates. The assembly of adhesive sequences through recognition of structured templates outlines a strategy used by barnacles to control physical mechanisms of underwater adhesive delivery, activation, and curing based on molecular recognition between proteins.


Assuntos
Adesivos/química , Conformação Molecular , Polimerização , Thoracica/química , Sequência de Aminoácidos , Animais , Nanoestruturas/química , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Nat Commun ; 9(1): 4090, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291243

RESUMO

Organisms have evolved biomaterials with an extraordinary convergence of high mechanical strength, toughness, and elasticity. In contrast, synthetic materials excel in stiffness or extensibility, and a combination of the two is necessary to exceed the performance of natural biomaterials. We bridge this materials property gap through the side-chain-to-side-chain polymerization of cyclic ß-peptide rings. Due to their strong dipole moments, the rings self-assemble into rigid nanorods, stabilized by hydrogen bonds. Displayed amines serve as functionalization sites, or, if protonated, force the polymer to adopt an unfolded conformation. This molecular design enhances the processability and extensibility of the biopolymer. Molecular dynamics simulations predict stick-slip deformations dissipate energy at large strains, thereby, yielding toughness values greater than natural silks. Moreover, the synthesis route can be adapted to alter the dimensions and displayed chemistries of nanomaterials with mechanical properties that rival nature.


Assuntos
Biopolímeros/química , Nanoestruturas/química , Peptídeos/química , Teste de Materiais
11.
Adv Sci (Weinh) ; 5(6): 1700762, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938165

RESUMO

Marine macrofoulers (e.g., barnacles, tubeworms, mussels) create underwater adhesives capable of attaching themselves to almost any material. The difficulty in removing these organisms frustrates maritime and oceanographic communities, and fascinates biomedical and industrial communities seeking synthetic adhesives that cure and hold steadfast in aqueous environments. Protein analysis can reveal the chemical composition of natural adhesives; however, developing synthetic analogs that mimic their performance remains a challenge due to an incomplete understanding of adhesion processes. Here, it is shown that acorn barnacles (Amphibalanus (=Balanus) amphitrite) secrete a phase-separating fluid ahead of growth and cement deposition. This mixture consists of a phenolic laden gelatinous phase that presents a phase rich in lipids and reactive oxygen species at the seawater interface. Nearby biofilms rapidly oxidize and lift off the surface as the secretion advances. While phenolic chemistries are ubiquitous to arthropod adhesives and cuticles, the findings demonstrate that A. amphitrite uses these chemistries in a complex surface-cleaning fluid, at a substantially higher relative abundance than in its adhesive. The discovery of this critical step in underwater adhesion represents a missing link between natural and synthetic adhesives, and provides new directions for the development of environmentally friendly biofouling solutions.

12.
Biointerphases ; 12(2): 02D403, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460528

RESUMO

Biomaterials with nanostructured surfaces influence cellular response in a significantly different, and often beneficial, manner compared to materials with coarser features. Hydroxyapatite [HA, Ca10(PO4)6(OH)2] and strontium-apatite [Sr10(PO4)6(OH)2] microspheres that present nanotopographies similar to biological apatites were incubated in albumin solutions, at physiological conditions (40 mg ml-1; 37 °C), for up to 72 h. Electronic and vibrational circular dichroism spectroscopies revealed spectral signatures characteristic of stacked ß-sheet regions in higher ordered structures (e.g., fibrils). The presence of stacked ß-sheets was further evidenced by thioflavin T staining. The sequestration of interfacial Ca atoms by pyrophosphate ions (P2O74-), prior to albumin adsorption, prevented stacked ß-sheet formation on hydroxyapatite. These results suggest that the charge and/or spatial arrangement of Ca atoms direct stacked ß-sheet formation during bovine serum albumin adsorption. Stacked ß-sheet spectral features were also observed after incubating HA in fetal bovine serum, highlighting that this phenomena could direct cellular response to these biomaterials in vivo.


Assuntos
Durapatita/química , Nanoestruturas/química , Soroalbumina Bovina/química , Animais , Bovinos , Estrutura Secundária de Proteína
13.
ACS Appl Mater Interfaces ; 9(13): 11493-11505, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273414

RESUMO

Oxidases are found to play a growing role in providing functional chemistry to marine adhesives for the permanent attachment of macrofouling organisms. Here, we demonstrate active peroxidase and lysyl oxidase enzymes in the adhesive layer of adult Amphibalanus amphitrite barnacles through live staining, proteomic analysis, and competitive enzyme assays on isolated cement. A novel full-length peroxinectin (AaPxt-1) secreted by barnacles is largely responsible for oxidizing phenolic chemistries; AaPxt-1 is driven by native hydrogen peroxide in the adhesive and oxidizes phenolic substrates typically preferred by phenoloxidases (POX) such as laccase and tyrosinase. A major cement protein component AaCP43 is found to contain ketone/aldehyde modifications via 2,4-dinitrophenylhydrazine (DNPH) derivatization, also called Brady's reagent, of cement proteins and immunoblotting with an anti-DNPH antibody. Our work outlines the landscape of molt-related oxidative pathways exposed to barnacle cement proteins, where ketone- and aldehyde-forming oxidases use peroxide intermediates to modify major cement components such as AaCP43.


Assuntos
Oxirredutases/metabolismo , Adesivos , Animais , Catecol Oxidase , Peróxidos , Proteína-Lisina 6-Oxidase , Proteômica , Thoracica
14.
Sci Rep ; 6: 36219, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824121

RESUMO

Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.


Assuntos
Proteínas de Artrópodes/genética , Proteômica/métodos , Análise de Sequência de RNA/métodos , Thoracica/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Celulases/genética , Celulases/metabolismo , Fibroínas/genética , Peso Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Homologia de Sequência de Aminoácidos , Thoracica/genética
15.
Langmuir ; 32(2): 541-50, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26681301

RESUMO

Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct their adhesive interfaces.


Assuntos
Adesivos/química , Amidas/química , Proteínas/química , Thoracica/química , Adesividade , Animais , Vidro/química , Ouro/química , Muda/fisiologia , Imagem Óptica , Oxirredução , Proteínas/metabolismo , Refratometria , Água do Mar , Thoracica/fisiologia
16.
BMC Genomics ; 16: 859, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26496984

RESUMO

BACKGROUND: A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. METHODS: The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. RESULTS: We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. CONCLUSIONS: The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.


Assuntos
Perfilação da Expressão Gênica , Muda/genética , Proteínas/genética , Proteínas/metabolismo , Thoracica/genética , Thoracica/metabolismo , Transcriptoma , Animais , Biologia Computacional/métodos , Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
17.
ACS Nano ; 9(6): 5782-91, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25970003

RESUMO

The recognition of atomically distinct surface features by adsorbed biomolecules is central to the formation of surface-templated peptide or protein nanostructures. On mineral surfaces such as calcite, biomolecular recognition of, and self-assembly on, distinct atomic kinks and steps could additionally orchestrate changes to the overall shape and symmetry of a bulk crystal. In this work, we show through in situ atomic force microscopy (AFM) experiments that an acidic 20 kDa cement protein from the barnacle Megabalanus rosa (MRCP20) binds specifically to step edge atoms on {101̅4} calcite surfaces, remains bound and further assembles over time to form one-dimensional nanofibrils. Protein nanofibrils are continuous and organized at the nanoscale, exhibiting striations with a period of ca. 45 nm. These fibrils, templated by surface steps of a preferred geometry, in turn selectively dissolve underlying calcite features displaying the same atomic arrangement. To demonstrate this, we expose the protein solution to bare and fibril-associated rhombohedral etch pits to reveal that nanofibrils accelerate only the movement of fibril-forming steps when compared to undecorated steps exposed to the same solution conditions. Calcite mineralized in the presence of MRCP20 results in asymmetric crystals defined by frustrated faces with shared mirror symmetry, suggesting a similar step-selective behavior by MRCP20 in crystal growth. As shown here, selective surface interactions with step edge atoms lead to a cooperative regime of calcite modification, where templated long-range protein nanostructures shape crystals.


Assuntos
Carbonato de Cálcio/química , Nanofibras/química , Proteínas/química , Animais , Microscopia de Força Atômica , Tamanho da Partícula , Propriedades de Superfície , Thoracica/química
18.
Langmuir ; 31(16): 4654-62, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25867796

RESUMO

Glucosyltransferases (Gtfs) from S. mutans play critical roles in the development of virulent oral biofilms associated with dental caries disease. Gtfs adsorbed to the tooth surface produce glucans that promote local microbial colonization and provide an insoluble exopolysaccharides (EPS) matrix that facilitates biofilm initiation. Moreover, agents that inhibit the enzymatic activity of Gtfs in solution often have reduced or no effects on surface-adsorbed Gtfs. This study elucidated the mechanisms responsible for the differences in functionality that GtfB exhibits in solution vs surface-adsorbed. Upon adsorption to planar fused-quartz substrates, GtfB displayed a 37% loss of helices and 36% increase of ß-sheets, as determined by circular dichroism (CD) spectroscopy, and surface-induced conformational changes were more severe on substrates modified with CH3- and NH2-terminated self-assembled monolayers. GtfB also underwent substantial conformation changes when adsorbing to hydroxyapatite (HA) microspheres, likely due to electrostatic interactions between negatively charged GtfB and positively charged HA crystal faces. Conformational changes were lessened when HA surfaces were coated with saliva (sHA) prior to GtfB adsorption. Furthermore, GtfB remained highly active on sHA, as determined by in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, producing glucans that were structurally different than GtfB in solution and known to increase the accumulation and virulence of biofilms. Our data provide the first insight into the structural underpinnings governing Gtf conformation and enzymatic function that occur on tooth surfaces in vivo, which may lead to designing potent new inhibitors and improved strategies to combat the formation of pathogenic oral biofilms.


Assuntos
Durapatita/química , Glucanos/biossíntese , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Saliva/química , Adsorção , Durapatita/metabolismo , Glucanos/química , Conformação Molecular , Tamanho da Partícula , Saliva/metabolismo , Streptococcus mutans/enzimologia , Streptococcus mutans/metabolismo , Propriedades de Superfície
19.
ACS Biomater Sci Eng ; 1(11): 1085-1095, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33429550

RESUMO

The base plate of the acorn barnacle Amphibalanus amphitrite (equivalent to Balanus amphitrite) is composed of hierarchically scaled, mutually aligned calcite grains, adhered to the substratum via layered cuticular tissue and protein. Acorn barnacles grow by expanding and lengthening their side plates, under which the cuticle is stretched, and adhesive proteins are secreted. In barnacles with mineralized base plates, such as A. amphitrite, a mineralization front follows behind, radially expanding the base plate at the periphery. In this study, we show that the new mineralization develops above the adhesion layers in a unique trilayered structure. Calcite crystallites in each of the layers have distinct sizes, varying from coarse-grained (>1 µm across) in the upper layer, to fine-grained (∼1 µm) in the middle layer, to nanoparticulate (∼40 nm) in the basal layer. The fine-grained crystallites dominate the growth front, comprising the bulk of the shell at the periphery, with later coarse grain development on the top of the base plate (toward the barnacle interior) and nanocrystalline calcite templating underneath in contact with the cuticle/protein layer. While the coarse-grained calcite on the upper surface contains a range of crystal orientations, the underlying fine-grained and nanocrystalline calcite are mutually oriented to within a few degrees of each other. Electron diffraction and X-ray absorption spectroscopy confirm that all of the crystallites are calcite, and metastable aragonite or amorphous calcium carbonate (ACC) phases are not observed. The complex morphology of the leading edge of the base plate suggests that crystallization initiates with the emplacement of mutually aligned fine-grained calcite, followed by the accumulation of coarser grains above and nucleation of highly oriented nanocrystalline grains below.

20.
Biofouling ; 30(7): 799-812, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115515

RESUMO

The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.


Assuntos
Thoracica/crescimento & desenvolvimento , Animais , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Thoracica/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA