RESUMO
Although the precise underlying cause(s) of autism spectrum disorder remain unclear, more than 1000 rare genetic variations are associated with the condition. For a large number of people living with profound autism, this genetic heterogeneity has impeded the identification of common biological targets for therapy development for core and comorbid traits that include significant impairments in social communication, and repetitive and restricted behaviors. A substantial number of genes associated with autism encode proteins involved in signal transduction and synaptic transmission that are critical for brain development and function. CAMK4 is an emerging risk gene for autism spectrum disorder that encodes the Ca2+-calmodulin-dependent protein kinase-4 (CaMK4) enzyme. CaMK4 is a key component of a Ca2+-activated signaling pathway that regulates neurodevelopment and synaptic plasticity. In this review, we discuss three genetic variants of CAMK4 found in individuals with hyperkinetic movement disorder and comorbid neurological symptoms including autism spectrum disorder that are likely pathogenic with monogenic effect. We also comment on four other genetic variations in CAMK4 that display associations with autism spectrum disorder, as well as twelve examples of autism-associated variations in other genes that impact CaMK4 signaling pathways. Finally, we highlight three environmental risk factors that impact CaMK4 signaling based on studies in preclinical models of autism and/or clinical cohorts. Overall, we review molecular, genetic, physiological, and environmental evidence that suggest defects in the CaMK4 signaling pathway may play an important role in a common autism pathogenesis network across numerous patient groups, and propose CaMK4 as a potential therapeutic target.
RESUMO
Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.
RESUMO
BACKGROUND: Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. METHODS: We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS: We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION: Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
RESUMO
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Assuntos
Ceramidas , Quilomícrons , Dieta Hiperlipídica , Mucosa Intestinal , Animais , Ceramidas/metabolismo , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ratos , Mucosa Intestinal/metabolismo , Humanos , Masculino , Lipidômica , Intestinos/metabolismoRESUMO
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de VidaRESUMO
AIM: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans. However, it is unknown whether ACAD10 plays a role in metformin's metabolic actions. MATERIALS AND METHODS: We assessed the role for ACAD10 on whole-body metabolism and metformin action by generating ACAD10KO mice on a C57BL/6J background via CRISPR-Cas9 technology. In-depth metabolic phenotyping was conducted in both sexes on a normal chow and high fat-high sucrose diet. RESULTS: Compared with wildtype mice, we detected no difference in body composition, energy expenditure or glucose tolerance in male or female ACAD10KO mice, on a chow diet or high-fat, high-sucrose diet (p ≥ .05). Hepatic mitochondrial function and insulin signalling was not different between genotypes under basal or insulin-stimulated conditions (p ≥ .05). Glucose excursions following acute administration of metformin before a glucose tolerance test were not different between genotypes nor was body composition or energy expenditure altered after 4 weeks of daily metformin treatment (p ≥ .05). Despite the lack of a metabolic phenotype, liver lipidomic analysis suggests ACAD10 depletion influences the abundance of specific ceramide species containing very long chain fatty acids, while metformin treatment altered clusters of cholesterol ester, plasmalogen, phosphatidylcholine and ceramide species. CONCLUSIONS: Loss of ACAD10 does not alter whole-body metabolism or impact the acute or chronic metabolic actions of metformin in this model.
Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Metformina/farmacologia , Glucose/metabolismo , Insulina , Ceramidas , Sacarose , Dieta Hiperlipídica/efeitos adversosRESUMO
Frontotemporal dementia (FTD) is a neurodegenerative disorder that affects the frontal and temporal lobes of the brain, primarily in individuals under 65 years of age, and is the second most common form of dementia worldwide. There is no cure for FTD and current treatments offer limited symptomatic relief. Regular physical activity exhibits cognitive and neuroprotective benefits in healthy individuals and in various neurodegenerative diseases, such as Alzheimer's disease, but few studies have examined its efficacy in FTD. Accordingly, we investigated the impact of voluntary exercise training (VET) on the metabolic and behavioral characteristics of the rTg4510 transgenic mouse model of familial FTD. We show that regardless of genotype, VET increased energy expenditure, decreased sleep duration, and improved long-term memory in rTg4510 mice and WT littermates. Moreover, VET appeared to improve hyperactivity, a common feature of FTD, in rTg4510 mice. Although further work is required, these findings provide important insights into the potential benefits of physical activity in FTD.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Camundongos , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Camundongos Transgênicos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Lobo Temporal , Modelos Animais de Doenças , Exercício FísicoRESUMO
Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.
Assuntos
Histona Desacetilases , Células Musculares , Camundongos , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Morte CelularRESUMO
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Assuntos
Transtorno Bipolar , Animais , Humanos , Camundongos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Mutação de Sentido IncorretoRESUMO
The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Hepatócitos , Inflamação/tratamento farmacológicoRESUMO
Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified.
RESUMO
Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Sistema Imunitário , Redes e Vias Metabólicas , Obesidade/terapia , Obesidade/metabolismo , Microambiente TumoralRESUMO
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
RESUMO
The female ovary contains a finite number of oocytes, and their release at ovulation becomes sporadic and disordered with aging and with obesity, leading to loss of fertility. Understanding the molecular defects underpinning this pathology is essential as age of childbearing and obesity rates increase globally. We identify that fibrosis within the ovarian stromal compartment is an underlying mechanism responsible for impaired oocyte release, which is initiated by mitochondrial dysfunction leading to diminished bioenergetics, oxidative damage, inflammation, and collagen deposition. Furthermore, antifibrosis drugs (pirfenidone and BGP-15) eliminate fibrotic collagen and restore ovulation in reproductively old and obese mice, in association with dampened M2 macrophage polarization and up-regulated MMP13 protease. This is the first evidence that ovarian fibrosis is reversible and indicates that drugs targeting mitochondrial metabolism may be a viable therapeutic strategy for women with metabolic disorders or advancing age to maintain ovarian function and extend fertility.
Assuntos
Longevidade , Ovário , Animais , Colágeno/metabolismo , Feminino , Fibrose , Humanos , Camundongos , Obesidade/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Ovário/patologiaRESUMO
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Assuntos
Diabetes Mellitus Tipo 2 , Adipocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/metabolismo , Obesidade/metabolismoRESUMO
INTRODUCTION: A potential role for the orphan G protein-coupled receptor, GPR21, in linking immune cell infiltration into tissues and obesity-induced insulin resistance has been proposed, although limited studies in mice are complicated by non-selective deletion of Gpr21. RESEARCH DESIGN AND METHODS: We hypothesized that a Gpr21-selective knockout mouse model, coupled with type 2 diabetes patient samples, would clarify these issues and enable clear assessment of GPR21 as a potential therapeutic target. RESULTS: High-fat feeding studies in Gpr21-/- mice revealed improved glucose tolerance and modest changes in inflammatory gene expression. Gpr21-/- monocytes and intraperitoneal macrophages had selectively impaired chemotactic responses to monocyte chemoattractant protein (MCP)-1, despite unaltered expression of Ccr2. Further genotypic analysis revealed that chemotactic impairment was due to dysregulated monocyte polarization. Patient samples revealed elevated GPR21 expression in peripheral blood mononuclear cells in type 2 diabetes, which was correlated with both %HbA1c and fasting plasma glucose levels. CONCLUSIONS: Collectively, human and mouse data suggest that GPR21 influences both glucose homeostasis and MCP-1/CCL2-CCR2-driven monocyte migration. However, a Gpr21-/- bone marrow transplantation and high-fat feeding study in mice revealed no effect on glucose homeostasis, suggesting that there is no (or limited) overlap in the mechanism involved for monocyte-driven inflammation and glucose homeostasis.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Quimiocina CCL2/genética , Diabetes Mellitus Tipo 2/genética , Glucose , Homeostase , Humanos , Resistência à Insulina/genética , Leucócitos Mononucleares , Camundongos , Receptores CCR2/genética , Receptores Acoplados a Proteínas G/genéticaRESUMO
Glucose and fructose are closely related simple sugars, but fructose has been associated more closely with metabolic disease. Until the 1960s, the major dietary source of fructose was fruit, but subsequently, high-fructose corn syrup (HFCS) became a dominant component of the Western diet. The exponential increase in HFCS consumption correlates with the increased incidence of obesity and type 2 diabetes mellitus, but the mechanistic link between these metabolic diseases and fructose remains tenuous. Although dietary fructose was thought to be metabolized exclusively in the liver, evidence has emerged that it is also metabolized in the small intestine and leads to intestinal epithelial barrier deterioration. Along with the clinical manifestations of hereditary fructose intolerance, these findings suggest that, along with the direct effect of fructose on liver metabolism, the gut-liver axis plays a key role in fructose metabolism and pathology. Here, we summarize recent studies on fructose biology and pathology and discuss new opportunities for prevention and treatment of diseases associated with high-fructose consumption.
Assuntos
Diabetes Mellitus Tipo 2 , Xarope de Milho Rico em Frutose , Diabetes Mellitus Tipo 2/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Xarope de Milho Rico em Frutose/efeitos adversos , Xarope de Milho Rico em Frutose/metabolismo , Humanos , Fígado/metabolismoRESUMO
Cardiometabolic disorders were originally thought to be driven primarily by changes in lipid metabolism that cause the accumulation of lipids in organs, thereby impairing their function. Thus, in the setting of cardiovascular disease, statins - a class of lipid-lowering drugs - have remained the frontline therapy. In the past 20 years, seminal discoveries have revealed a central role of both the innate and adaptive immune system in driving cardiometabolic disorders. As such, it is now appreciated that immune-based interventions may have an important role in reducing death and disability from cardiometabolic disorders. However, to date, there have been a limited number of clinical trials exploring this interventional strategy. Nonetheless, elegant preclinical research suggests that immune-targeted therapies can have a major impact in treating cardiometabolic disease. Here, we discuss the history and recent advancements in the use of immunotherapies to treat cardiometabolic disorders.
Assuntos
Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/terapia , Imunoterapia , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapia , Animais , HumanosRESUMO
Metabolic disease is highly prevalent. Here we discuss the therapeutic utility of using gp130 receptor ligands as a therapeutic strategy to treat metabolic disease.