Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11894, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681142

RESUMO

Thanks to their unique optical properties Ge-Sb-S-Se-Te amorphous chalcogenide materials and compounds offer tremendous opportunities of applications, in particular in near and mid-infrared range. This spectral range is for instance of high interest for photonics or optical sensors. Using co-sputtering technique of chalcogenide compound targets in a 200 mm industrial deposition tool, we show how by modifying the amorphous structure of GeSbwSxSeyTez chalcogenide thin films one can significantly tailor their linear and nonlinear optical properties. Modelling of spectroscopic ellipsometry data collected on the as-deposited chalcogenide thin films is used to evaluate their linear and nonlinear properties. Moreover, Raman and Fourier-transform infrared spectroscopies permitted to get a description of their amorphous structure. For the purpose of applications, their thermal stability upon annealing is also evaluated. We demonstrate that depending on the GeSbwSxSeyTez film composition a trade-off between a high transparency in near- or mid-infrared ranges, strong nonlinearity and good thermal stability can be found in order to use such materials for applications compatible with the standard CMOS integration processes of microelectronics and photonics.

2.
Sci Rep ; 10(1): 6185, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277096

RESUMO

The manufacturing cost of quantum cascade lasers is still a major bottleneck for the adoption of this technology for chemical sensing. The integration of Mid-Infrared sources on Si substrate based on CMOS technology paves the way for high-volume low-cost fabrication. Furthermore, the use of Si-based fabrication platform opens the way to the co-integration of QCL Mid-InfraRed sources with SiGe-based waveguides, enabling realization of optical sensors fully integrated on planar substrate. We report here the fabrication and the characterization of DFB-QCL sources using top metal grating approach working at 7.4 µm fully implemented on our 200 mm CMOS pilot line. These QCL featured threshold current density of 2.5 kA/cm² and a linewidth of 0.16 cm-1 with a high fabrication yield. This approach paves the way toward a Mid-InfraRed spectrometer at the silicon chip level.

3.
Opt Express ; 22(12): 14505-16, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977546

RESUMO

Optically induced thermal and free carrier nonlinearities in silicon micro-ring resonator influence their behavior. They can be either deleterious by making them instable and by driving their resonances out of the designed wavelengths, or enabler of different applications. Among the most interesting one, there are optical bistability and self induced oscillations. These lead to all optical logic, signal modulation, optical memories and applications in neural networks. Here, we theoretically and experimentally demonstrate that when many resonators are coupled together, thermal and free carrier nonlinearities induce also chaos. The chaotic dynamics are deeply analyzed using experimentally reconstructed phase space trajectories and the tool of Lyapunov exponents.

4.
Opt Express ; 22(6): 6674-9, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664016

RESUMO

We demonstrated 40 Gbit/s optical link by coupling a silicon (Si) optical modulator to a germanium (Ge) photo-detector from two separate photonic chips. The optical modulator was based on carrier depletion in a pn diode integrated in a 950-µm long Mach-Zehnder interferometer. The Ge photo-detector was a lateral pin diode butt coupled to a silicon waveguide. The overall loss, which is mainly due to coupling (3 grating couplers times ~4 dB) was estimated to be lower than 18 dB. That also included modulator loss (4.9-dB) and propagation loss (<1 dB/cm). Both optoelectronic devices have been fabricated on a 300-mm CMOS platform to address high volume production markets.

5.
Opt Lett ; 38(24): 5434-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24343010

RESUMO

Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C around 1550 nm is obtained.

6.
Opt Express ; 21(19): 22471-5, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104136

RESUMO

We demonstrate high-speed silicon modulators based on carrier depletion in interleaved pn junctions fabricated on 300 mm-SOI wafers using CMOS foundry facilities. 950 µm-long Mach Zehnder (MZ) and ring resonator (RR) modulator with a 100 µm radius, were designed, fabricated and characterized. 40 Gbit/s data transmission has been demonstrated for both devices. The MZ modulator exhibited a high extinction ratio of 7.9 dB with only 4 dB on-chip losses at the operating point.

7.
Opt Express ; 21(11): 13675-83, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736620

RESUMO

Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated. The small bending radius allowable for the silicon waveguides results in a short cavity length, ensuring stable lasing in a single longitudinal mode, even with relaxed values for the intra-cavity filter bandwidths.

8.
Opt Express ; 21(4): 3932-40, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481928

RESUMO

The nonlinear response of amorphous silicon waveguides is reported and compared to silicon-on-insulator (SOI) samples. The real part of the nonlinear coefficient γ is measured by four-wave-mixing and the imaginary part of γ is characterized by measuring the nonlinear loss at different peak powers. The combination of both results yields a two-photon-absorption figure of merit of 4.9, which is more than 7 times higher than for the SOI samples. Time-resolved measurements and simulations confirm the measured nonlinear coefficient γ and show the absence of slow free-carrier effects versus ns free-carrier lifetimes in the SOI samples.


Assuntos
Modelos Teóricos , Dinâmica não Linear , Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Nanotechnology ; 24(11): 115202, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23449309

RESUMO

An integrated erbium-based light emitting diode has been realized in a waveguide configuration allowing 1.54 µm light signal routing in silicon photonic circuits. This injection device is based on an asymmetric horizontal slot waveguide where the active slot material is Er(3+) in SiO2 or Er(3+) in Si-rich oxide. The active horizontal slot waveguide allows optical confinement, guiding and lateral extraction of the light for on-chip distribution. Light is then coupled through a taper section to a passive Si waveguide terminated by a grating which extracts (or inserts) the light signal for measuring purposes. We measured an optical power density in the range of tens of µW/cm(2) which follows a super-linear dependence on injected current density. When the device is biased at high current density, upon a voltage pulse (pump signal), free-carrier and space charge absorption losses become large, attenuating a probe signal by more than 60 dB/cm and thus behaving conceptually as an electro-optical modulator. The integrated device reported here is the first example, still to be optimized, of a fundamental block to realize an integrated silicon photonic circuit with monolithic integration of the light emitter.

10.
Opt Express ; 20(26): B552-7, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262901

RESUMO

We propose and demonstrate asymmetric 10 Gbit/s upstream--100 Gbit/s downstream per wavelength colorless WDM/TDM PON using a novel hybrid-silicon chip integrating two tunable lasers. The first laser is directly modulated in burst mode for upstream transmission over up to 25 km of standard single mode fiber and error free transmission over 4 channels across the C-band is demonstrated. The second tunable laser is successfully used as local oscillator in a coherent receiver across the C-band simultaneously operating with the presence of 80 downstream co-channels.

11.
Opt Express ; 20(27): 28808-18, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263121

RESUMO

Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er(3+) ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 µW. All these performances suggest the usage of these devices as electro-optical modulators.


Assuntos
Érbio/química , Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Opt Express ; 20(21): 23838-45, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188349

RESUMO

We present the characterization of the ultrafast nonlinear dynamics of a CMOS-compatible horizontal-slot waveguide with silicon nanocrystals. Results are compared to strip silicon waveguides, and modeled with nonlinear split-step calculations. The extracted parameters show that the slot waveguide has weaker carrier effects and better nonlinear figure-of-merit than the strip waveguides.


Assuntos
Modelos Teóricos , Nanoestruturas/química , Nanotecnologia/instrumentação , Dinâmica não Linear , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura
13.
Opt Express ; 20(21): 23856-64, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188351

RESUMO

The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Opt Express ; 20(20): 22609-15, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037410

RESUMO

We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re(γ) = 1200W(-1)m(-1). We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm(2)) over timescales of at least an hour.


Assuntos
Nanotubos/química , Nanotubos/ultraestrutura , Silício/química , Luz , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Espalhamento de Radiação
15.
Opt Lett ; 37(17): 3504-6, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22940930

RESUMO

In this Letter, we demonstrate a highly efficient, compact, high-contrast and low-loss silicon slow wave modulator based on a traveling-wave Mach-Zehnder interferometer with two 500 µm long slow wave phase shifters. 40 Gb/s operation with 6.6 dB extinction ratio at quadrature and with an on-chip insertion loss of only 6 dB is shown. These results confirm the benefits of slow light as a means to enhance the performance of silicon modulators based on the plasma dispersion effect.

16.
Opt Lett ; 37(12): 2379-81, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739914

RESUMO

A novel ultracompact electro-optic phase modulator based on a single 9 µm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6 dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

17.
Opt Lett ; 37(10): 1721-3, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22627549

RESUMO

We describe and demonstrate experimentally a method for photonic mixing of microwave signals by using a silicon electro-optical Mach-Zehnder modulator enhanced via slow-light propagation. Slow light with a group index of ~11, achieved in a one-dimensional periodic structure, is exploited to improve the upconversion performance of an input frequency signal from 1 to 10.25 GHz. A minimum transmission point is used to successfully demonstrate the upconversion with very low conversion losses of ~7 dB and excellent quality of the received I/Q modulated QPSK signal with an optimum EVM of ~8%.

18.
Nanotechnology ; 23(12): 125203, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22414783

RESUMO

The electroluminescence (EL) at 1.54 µm of metal­oxide­semiconductor (MOS) devices withEr3C ions embedded in the silicon-rich silicon oxide (SRSO) layer has been investigated under different polarization conditions and compared with that of erbium doped SiO2 layers. EL time-resolved measurements allowed us to distinguish between two different excitation mechanisms responsible for the Er3C emission under an alternate pulsed voltage signal (APV). Energy transfer from silicon nanoclusters (Si-ncs) to Er3C is clearly observed at low-field APV excitation. We demonstrate that sequential electron and hole injection at the edges of the pulses creates excited states in Si-ncs which upon recombination transfer their energy to Er3C ions. On the contrary, direct impact excitation of Er3C by hot injected carriers starts at the Fowler­Nordheim injection threshold (above 5 MV cm(-1)) and dominates for high-field APV excitation.

19.
Opt Express ; 19(21): 20876-85, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21997097

RESUMO

While current optical communication networks efficiently carry and process huge amounts of digital information over large and medium distances, silicon photonics technology has the capacity to meet the ceaselessly increasing demand for bandwidth via energy efficient, inexpensive and mass producible short range optical interconnects. In this context, handling electrical-to-optical data conversion through compact and high speed electro-optical modulators is of paramount importance. To tackle these challenges, we combine the attractive properties of slow light propagation in a nanostructured periodic waveguide together with a high speed semiconductor pn diode, and demonstrate a highly efficient and mass manufacturable 500 µm-long silicon electro-optical device, exhibiting error free modulation up to 20 Gbit/s. These results, supported by modulation rate capabilities reaching 40 Gbit/s, pave a foreseeable way towards dense, low power and ultra fast integrated networks-on-chip for future chip-scale high performance computing systems.

20.
Opt Express ; 19(12): 11507-16, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716382

RESUMO

Data interconnects are on the verge of a revolution. Electrical links are increasingly being pushed to their limits with the ever increasing demand for bandwidth. Data transmission in the optical domain is a leading candidate to satisfy this need. The optical modulator is key to most applications and increasing the data rate at which it operates is important for reducing power consumption, increasing channel bandwidth limitations and improving the efficiency of infrastructure usage. In this work silicon based devices of lengths 3.5mm and 1mm operating at 40Gbit/s are demonstrated with extinction ratios of up to 10dB and 3.5dB respectively. The efficiency and optical loss of the phase shifter is 2.7V.cm and 4dB/mm (or 4.5dB/mm including waveguide loss) respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA